Skip to main content

Advertisement

Log in

Where are they from and where are they going? Detecting areas of endemism, distribution patterns and conservation status of the order Spirostreptida in Brazil (Diplopoda, Juliformia)

  • Original Research
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Millipedes are well-known for their limited dispersal abilities with species restricted to mountains, islands, and patches of forest being important models for formulating and testing biogeographic hypotheses. The order Spirostreptida is composed of nearly 1300 species distributed across the Afrotropical, Oriental, and Neotropical regions. The order is divided into the suborders Cambalidea and Spirostreptidea with the families Pseudonannolenidae (Cambalidea) and Spirostreptidae (Spirostreptidea) occurring in Brazil. To date, there have been no studies on the biogeography of Neotropical Spirostreptida. We employed a multi-approach analysis with Parsimony Analysis of Endemicity, Endemicity Analysis, and Infomap, to detect areas of endemism and patterns of distribution of the order in Brazil. Six areas of endemism are proposed for the 133 Brazilian species: Northern Serra Geral, Southeastern mountain ranges, Cerrado and Atlantic Forest zone, Eastern Cerrado and Serra do Espinhaço, Pantanal, and Southern Amazon and Cerrado zone. Most endemic areas fall within the Atlantic Forest, which has been previously shown to be an important area of endemism for many invertebrate taxa. The richest biomes are the Atlantic Forest with 75 species and the Cerrado with 55 species, while the least rich biomes are the Caatinga with six species and the Pampa with three species. Although the southeastern region of Brazil has the highest species richness, it also has the highest concentration of threatened species. Based on International Union for Conservation of Nature (IUCN) criteria, most Brazilian Spirostreptida are either endangered or critically endangered, with the highest concentration of endangered taxa occurring in the Atlantic Forest biome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aagesen L, Szumik C, Goloboff P (2013) Consensus in the search for areas of endemism. J Biogeogr 40:2011–2016

    Article  Google Scholar 

  • Aagesen L, Szumik CA, Zuloaga FO, Morrone O (2009) Quantitative biogeography in the South America highlands—recognizing the Altoandina, Puna and Prepuna through the study of Poaceae. Cladistics 25:295–310

    Article  PubMed  Google Scholar 

  • Adis J (1981) Comparative ecological studies of the terrestrial arthropod fauna in Central Amazonian inundation-forests. Amazoniana 7(2):87–173

    Google Scholar 

  • Adis J (1992) Überlebensstrategien terrestrischer Invertebraten in Überschwemmungswäldern Zentralamazoniens. Verh Naturwissenschaftlicher Verein Hamburg (NF) 33:21–114

    Google Scholar 

  • Alho CJR, Mamede SB, Benites M, Andrade BS, Sepúlveda JJO (2019) Threats to the biodiversity of the Brazilian Pantanal due to land use and occupation. Ambiente & Sociedade 22:1–22

    Article  Google Scholar 

  • Alvares CA, Stape JS, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728

    Article  Google Scholar 

  • Asenjo A, Pietrobon T, Ferreira RL (2019) A new troglobitic species of Metopioxys (Staphylinidae: Pselaphinae) from Brazilian iron ore caves. Zootaxa 4576(1):195–200

    Article  Google Scholar 

  • Baselga A, Orme DL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812

    Article  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143

    Article  Google Scholar 

  • Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol Biogeogr 21:1223–1232

    Article  Google Scholar 

  • Battirola LD, Golovatch SI, Pinheiro TG, Batistella DA, Rosado-Neto GH, Chagas-Jr A, Brescovit AD, Marques MI (2017) Myriapod (Arthropoda, Myriapoda) diversity and distribution in a floodplain forest of the Brazilian Pantanal. Stud Neotropic Fauna Environ 53:1–13

    Google Scholar 

  • Battirola LD, Marques MI, Rosado-Neto GH, Pinheiro TG, Pinho NGC (2009) Vertical and time distribution of Diplopoda (Arthropoda: Myriapoda) in a monodominant forest in Pantanal of Mato Grosso, Brazil. Zoologia 26(3):479–487

    Article  Google Scholar 

  • Berlinck CN, Lima LHA, Pereira AMM, Carvalho-Jr EAR, Paula RC, Thomas WM, Morato RG (2022) The Pantanal is on fire and only a sustainable agenda can save the largest wetland in the world. Braz J Biol 82:1–2

    Article  Google Scholar 

  • Bichuette ME, Simões LB, Zepon T, von Schimonsky DM, Gallão JE (2019) Richness and taxonomic distinctness of cave invertebrates from the northeastern state of Goiás, central Brazil: a vulnerable and singular area. Subterr Biol 29:1–33

    Article  Google Scholar 

  • Bispo PC, Lecci LS (2011) Gripopterygidae (Plecoptera) from Paranapiacaba mountains, southeastern Brazil. Ann Limnol 47:373–385

    Article  Google Scholar 

  • Bogyó D, Magura T, Nagy DD, Tóthmérész B (2015) Distribution of millipedes (Myriapoda, Diplopoda) along a forest interior-forest edge—grassland habitat complex. ZooKeys 510:181–195

    Article  Google Scholar 

  • Bouzan RS, Iniesta LFM, Pena-Barbosa JPP, Brescovit AD (2018) Annotated checklist of the millipede family Chelodesmidae Cook, 1895 from São Paulo state, Brazil (Diplopoda: Polydesmida). Papeis Avulsos De Zoologia 58:1–19

    Google Scholar 

  • Bouzan RS, Iniesta LFM, Souza CAR, Zampaulo RA, Brescovit AD (2019) Taxonomic review of the Amazonian millipede genus Parastenonia Hoffman, 1977 and description of a new species from iron-ore caves (Polydesmida: Chelodesmidae). J Nat Hist 53(45–46):2781–2799

    Article  Google Scholar 

  • Bragagnolo C, Pinto-da-Rocha R, Antunes M, Clouse RM (2015) Phylogenetics and phylogeography of a long-legged harvestman (Arachnida: Opiliones) in the Brazilian Atlantic Rain Forest reveals poor dispersal, low diversity and extensive mitochondrial introgression. Invertebr Syst 29(4):386–404

    Article  CAS  Google Scholar 

  • Brasil (2008) Federal Decree N° 6.640 of 07 November, 2008. Relevância de cavernas. Diário Oficial da República Federativa do Brasil, Brasília. https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2008/decreto/d6640.htm. Accessed 21 Nov 2022

  • Brasil (2017) Ministry of the Environment—Normative Instruction N° 2 of 30 August, 2017. Define a metodologia para classificação do grau de relevância das cavidades naturais subterrâneas. Diário Oficial da República Federativa do Brasil, Brasília. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/19272154/do1-2017-09-01-instrucao-normativa-n-2-de-30-de-agosto-de-2017-19272042 . Accessed 21 Nov 2022

  • Brescovit AD, Cizauskas I, Mota LP (2018) Seven new species of the spider genus Ochyrocera from caves in Floresta Nacional de Carajás, PA, Brazil (Araneae, Ochyroceratidae). Zookeys 726:87–130

    Article  Google Scholar 

  • Brölemann HW (1904) Myriapodes du Museu Paulista, IIe mémorie: Manaos. Revista Do Museu Paulista 6:63–96

    Google Scholar 

  • Brölemann HW (1909) Os Myriapodos do Brazil. Catalogos da Fauna Brazileira. Museu Paulista, São Paulo, Brasil.

  • Cabanne G, Calderón L, Trujillo AN, Flores P, Pessoa R, d’Horta F, Miyaki C (2016) Effects of Pleistocene climate changes on species ranges and evolutionary processes in the Neotropical Atlantic Forest. Biol J Lin Soc 119:856–872

    Article  Google Scholar 

  • Campos-Filho IS, Fernandes CS, Cardoso GM, Bichuette ME, Aguiar JO, Taiti S (2020) New species and new records of terrestrial Isopods (Crustacea, Isopoda, Oniscidea) of the families Philosciidae and Scleropactidae from Brazilian caves. Eur J Taxon 606:1–38

    Google Scholar 

  • Casagranda D, Grosso ML (2013) Areas of Endemism: methodological and applied biogeographic contributions from South America. Curr Progr Biol Res 24(1):1–18

    Google Scholar 

  • Cavalcanti LF, Lima MF, Medeiros RCS, Meguerditchian I (2012) Plano de Ação Nacional para a Conservação do Patrimônio Espeleológico nas Áreas Cársticas da Bacia do Rio São Francisco. Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Brasília, Brasil

  • Chagas-Jr A, Bichuette ME (2018) A synopsis of centipedes in Brazilian caves: hidden species diversity that needs conservation (Myriapoda, Chilopoda). Zookeys 737:13–56

    Article  Google Scholar 

  • Colli-Silva M, Pirani JR (2019) Biogeographic patterns of Galipeinae (Galipeeae, Rutaceae) in Brazil: Species richness and endemism at different latitudes of the Atlantic Forest “hotspot.” Flora 251:77–87

    Article  Google Scholar 

  • Colombo AF, Joly CA (2010) Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz J Biol 70:697–708

    Article  CAS  PubMed  Google Scholar 

  • Coutinho LM (2006) O conceito de bioma. Acta Botanica Brasilica 20(1):13–23

    Article  Google Scholar 

  • Crawford CS (1992) Millipedes as Model Detritivores. Ber. nat.-med. Verein Innsbruck 10:277–288

    Google Scholar 

  • DaSilva MB, Pinto-da-Rocha R, DeSouza AM (2015) A protocol for the delimitation of areas of endemism and the historical regionalization of the Brazilian Atlantic Rain Forest using harvestmen distribution data. Cladistics 31:692–705

    Article  PubMed  Google Scholar 

  • DaSilva MB, Pinto-da-Rocha R, Morrone JJ (2017) Historical relationships of areas of endemism of the Brazilian Atlantic rain forest: a cladistics biogeographic analysis of harvestman taxa (Arachnida: Opiliones). Curr Zool 63(5):525–535

    PubMed  Google Scholar 

  • Dauby G, Stévart T, Droissart V, Cosiaux A, Deblauwe V, Simo-Droissart M, Sosef MSM, Lowry PP II, Schatz GE, Gereau RE, Couvreur TLP (2017) ConR: An R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol Evol 7(24):11292–11303

    Article  PubMed  PubMed Central  Google Scholar 

  • David JF, Vannier G (1997) Cold-hardiness of European millipedes (Diplopoda). Entomologica Scandinavica Supplement 51:251–256

    Google Scholar 

  • David JF (2015) Diplopoda-ecology. In: Minelli A (ed) Treatise on zoology-anatomy, taxonomy, biology the Myriapoda. Brill, Boston, pp 303–328

    Google Scholar 

  • David JJ (2009) Ecology of millipedes (Diplopoda) in the context of global change. Soil Org 81(3):719–733

    Google Scholar 

  • Decker P (2016) Phylogenetic analysis of the Australian trans-Bass Strait millipede genus Pogonosternum (Carl, 1912) (Diplopoda, Polydesmida, Paradoxosomatidae) indicates multiple glacial refugia in southeastern Australia. ZooKeys 578:15–31

    Article  Google Scholar 

  • Domínguez MC, Roig-Juñent S, Tassin JJ, Ocampo FC, Flores GE (2006) Areas of endemism of the Patagonian steppe: an approach based on insect distributional patterns using endemicity analysis. J Biogeogr 33:1527–1537

    Article  Google Scholar 

  • Durigan G, Siqueira MF, Franco GADC (2007) Threats to the Cerrado remnants of the state of São Paulo, Brazil. Scientia Agricola 64(4):355–363

    Article  Google Scholar 

  • Edler D, Guedes T, Zizka A, Rosvall M, Antonelli A (2017) Infomap bioregions: interactive mapping of biogeographical regions from species distributions. Syst Biol 66(2):197–204

    PubMed  Google Scholar 

  • Enghoff H, Reboleira AS (2020) The first blind spirostreptid millipede, found in a cave in Morocco; with notes on the genus Odontostreptus Attems, 1914 (Diplopoda, Spirostreptida, Spirostreptidae). Eur J Taxon 668:1–11

    Google Scholar 

  • Enghoff H (1993) Phylogenetic biogeography of a Holarctic group: the julidan millipedes. Cladistic subordinateness as an indicator of dispersal. J Biogeogr 20:525–536

    Article  Google Scholar 

  • Enghoff H (1995) A revision of the Paectophyllini and Calyptophyllini: millipedes of the Middle East (Diplopoda: Julida: Julidae). J Nat Hist 29:685–786

    Article  Google Scholar 

  • Enghoff H (2015) Diplopoda - geographical distribution. In: Minelli (ed) Treatise on zoology - anatomy, taxonomy, biology. The Myriapoda. Brill, Boston, pp 329–336

    Google Scholar 

  • Enghoff H, Golovatch SI, Short M, Stoev P, Wesener T (2015) Diplopoda–taxonomic overview. In: Minelli (ed) Treatise on zoology-anatomy, taxonomy, biology. The Myriapoda. Brill, Boston, pp 363–454

    Google Scholar 

  • Escalante T, Rodríguez-Tapia G, Linaje M, Illoldi-Range P, González-López R (2013) Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals. Revista Especializada En Ciencias Químico-Biológicas 16(1):5–17

    Article  Google Scholar 

  • Escalante T, Rodríguez-Tapia G, Szumik C, Morrone JJ, Rivas M (2010) Delimitation of the Nearctic region according to mammalian distributional patterns. J Mammal 91:1381–1388

    Article  Google Scholar 

  • Ferrari A, Paladini A, Schwertner CF, Grazia J (2010) Endemism analysis of Neotropical Pentatomidae (Hemiptera, Heteroptera). Iheringia, Série Zoologia 100(4):449–462

    Article  Google Scholar 

  • Ferreira RL, Bernard E, da Cruz Júnior FW et al (2022) Brazilian cave heritage under siege. Science 375(6586):1238–1239

    Article  CAS  PubMed  Google Scholar 

  • Fleming K, Johnston P, Zwartz D, Yokoyama Y, Lambeck K, Chappell J (1998) Refining the eustatic sea-level curve since the Last Glacial Maximum using farand intermediate-field sites. Earth Planet Sci Lett 163:327–342

    Article  CAS  Google Scholar 

  • Fonseca GAB (1985) The vanishing Brazilian Atlantic forest. Biol Conserv 34:17–34

    Article  Google Scholar 

  • Fontanetti CS (1996) Description of three cave diplopods of Pseudonannolene Silvestri (Diplopoda, Pseudonannolenida, Pseudonannolenidae). Revista Brasileira De Zoologia 13(2):427–433

    Article  Google Scholar 

  • Freitas VC, David JÁ, Fontanetti CS (2004) Caverna da Toca: comportamento e biologia do diplopodo Pseudonannolene tocaiensis Fontanetti, 1996 (Spirotreptida). O Carste (belo Horizonte) 16(2):38–42

    Google Scholar 

  • Gallo JS, Bichuette ME (2017) Is there correlation between photophobia and troglomorphism in Neotropical cave millipedes (Spirostreptida, Pseudonannolenidae)? Zoomorphology 137(2):273–289

    Article  Google Scholar 

  • Gilgado JD, Rusterholz HP, Baur B (2022) Millipedes step up: species extend their upper elevational limit in the Alps in response to climate warming. Insect Conserv Divers 15(1):61–72

    Article  Google Scholar 

  • Goloboff PA, Catalano SA (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32:221–238

    Article  PubMed  Google Scholar 

  • Goloboff PA (1999) Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15:415–428

    Article  PubMed  Google Scholar 

  • Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786

    Article  Google Scholar 

  • Golovatch SI, Kime DR (2009) Millipede (Diplopoda) distributions: a review. Soil Organisms 81(3):565–597

    Google Scholar 

  • Golovatch SI, Hoffman RL, Adis J, Marques AD, Raizer J, Silva FHO, Ribeiro RAK, Silva JL, Pinheiro TG (2005) Millipedes (Diplopoda) of the Brazilian Pantanal. Amazoniana 18(3/4):273–288

    Google Scholar 

  • Grazziotin FG, Monzel M, Echeverrigaray S, Bonatto SL (2006) Phylogeography of the Bothrops jararaca complex (Serpentes: Viperidae): past fragmentation and island colonization in the Brazilian Atlantic Forest. Mol Ecol 15:3969–3982

    Article  CAS  PubMed  Google Scholar 

  • Haffer J (1969) Speciation in Amazonian forest birds. Science 165(3889):131–137

    Article  CAS  PubMed  Google Scholar 

  • Hausdorf B, Hennig C (2003) Biotic element analysis in biogeography. Syst Biol 52(5):717–723

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cruz M, Rojas E, Guarino L. (2001) DIVA-GIS, Version 1.4. A geographic information system for the management and analysis of genetic resources data. Manual. International Potato Center, Lima, Peru

  • Hoffman RL (1980). Classification of the Diplopoda. Muséum D’Historie Naturalle, Genéve

  • Hoffman RL, Golovatch SI, Adis J, de Morais JW (2002) Diplopoda. In: Adis J (ed) Amazonian Arachnida and Myriapoda. Pensoft Publishers, Sofia, pp 505–533

    Google Scholar 

  • Hoffman RL, Golovatch SI, Adis J, de Morais JW (1996) Practical keys to the orders and families of millipedes of the Neotropical region (Myriapoda: Diplopoda). Amazoniana 14(1–2):1–35

    Google Scholar 

  • Hovenkamp P (1997) Vicariance events, not areas, should be used in biogeographical analysis. Cladistics 13:67–79

    Article  CAS  PubMed  Google Scholar 

  • Iniesta LFM, Ferreira RL (2013a) Two new species of Pseudonannolene Silvestri, 1895 from Brazilian limestone caves (Spirostreptida: Pseudonannolenidae): synotopy of a troglophilic and a troglobiotic species. Zootaxa 3702(4):357–369

    Article  Google Scholar 

  • Iniesta LFM, Ferreira RL (2013b) The first troglobitic Pseudonannolene from Brazilian iron ore caves (Spirostreptida: Pseudonannolenidae). Zootaxa 3669(1):085–095

    Article  Google Scholar 

  • Iniesta LFM, Ferreira RL (2015) Pseudonannolene lundi n sp, a new troglobitic millipede from a Brazilian limestone cave (Spirostreptida: Pseudonannolenidae). Zootaxa 3949(1):123–128

    Article  PubMed  Google Scholar 

  • Iniesta LFM, Bouzan RS, Rodrigues PES, Almeida TM, Ott R, Brescovit AD (2020a) Ecological niche modeling predicting the potential invasion of the non-native millipede Oxidus gracilis (C. L. Koch, 1847) (Polydesmida: Paradoxosomatidae) in Brazilian Atlantic Forest. Annales De La Société Entomologique De France (n.s.) 56(5):387–394

    Article  Google Scholar 

  • Iniesta LFM, Bouzan RS, Rodrigues PES, Almeida TM, Ott R, Brescovit AD (2021) A preliminary survey and range extension of millipedes species introduced in Brazil (Myriapoda, Diplopoda). Papéis Avulsos De Zoologia 61:1–18

    Article  Google Scholar 

  • Iniesta LFM, Brescovit AD, Júnior DGA, Bouzan RS (2022a) Into the New World: first report of introduction of the Portuguese millipede Ommatoiulus moreleti (Lucas, 1860) (Julida: Julidae) in South America and its potential invasion range into the continent. Annales De La Société Entomologique De France 58(3):187–196

    Article  Google Scholar 

  • Iniesta LFM, Bouzan RS, Battirola LD, Brescovit AD (2022b) New records for the poorly-known monotypic genera Exallostreptus and Guaporeptus, and a list of species from Mato Grosso state, Brazil (Diplopoda: Spirostreptida: Spirostreptidae). Papéis Avulsos De Zoologia 62:1–12

    Article  Google Scholar 

  • Iniesta LFM, Enghoff H, Brescovit AD, Bouzan RS (2020b) Phylogenetic placement of the monotypic genus Holopodostreptus Carl, 1913 and notes on the systematics of Pseudonannolenidae (Spirostreptida: Cambalidea). Invertebr Syst 34:661–677

    Google Scholar 

  • Iniesta LFM, Ferreira RL, Wesener T (2012) The first troglobitic Glomeridesmus from Brazil, and a template for a modern taxonomic description of Glomeridesmida (Diplopoda). Zootaxa 3550:26–42

    Article  Google Scholar 

  • Jeekel CAW (1985) The distribution of the Diplochaeta and the ‘lost’ continent Pacifica (Diplopoda). Bijdragen Tot De Dierkunde 55(1):100–112

    Google Scholar 

  • Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204:459–473

    Article  PubMed  Google Scholar 

  • Junta VGP, Castro-Souza RA, Ferreira RL (2020) Five new species of Phalangopsis Serville, 1831 (Orthoptera: Phalangopsidae) from Brazilian caves in the Amazon Forest. Zootaxa 4859(2):151–194

    Article  Google Scholar 

  • Karam-Gemael M, Decker P, Stoev P, Marques MI, Chagas-Jr A (2020) Conservation of terrestrial invertebrates: a review of IUCN and regional Red Lists for Myriapoda. ZooKeys 930:221–239

    Article  PubMed  PubMed Central  Google Scholar 

  • Karam-Gemael M, Izzo TJ, Chagas-Jr A (2018) Why be red listed? Threatened Myriapoda species in Brazil with implications for their conservation. ZooKeys 741:255–269

    Article  Google Scholar 

  • Krabbe E (1982) Systematik der Spirostreptidae (Diplopoda, Spirostreptomorpha). Abhandlungen Und Verhandlungen Des Naturwissenschaftlichen Vereins in Hamburg 24:1–476

    Google Scholar 

  • Lago-Barcia D, DaSilva MB, Conti LA, Carbayo F (2020) Areas of endemism of land planarians (Platyhelminthes: Tricladida) in the Southern Atlantic Forest. PLoS ONE 15(7):1–24

    Article  Google Scholar 

  • Lazorík M, Kula E (2015) Impact of weather and habitat on the occurrence of centipedes, millipedes and terrestrial isopods in mountain spruce forests. Folia Oecologica 42(2):103–112

    Google Scholar 

  • Ledru MP, Rousseau DD, Cruz FW, Riccomini C, Karmann I, Martin L (2005) Paleoclimate changes during the last 100,000 yr from a record in the Brazilian Atlantic rainforest region and interhemispheric comparison. Quatern Res 64(3):444–450

    Article  Google Scholar 

  • Lembi RC, Cronemberger C, Picharillo C, Koffler S, Sena PHA, Felappi JF, Moraes AR, Arshad A, Santos JP, Mansur AV (2020) Urban expansion in the Atlantic Forest: applying the Nature Futures Framework to develop a conceptual model and future scenarios. Biota Neotrop 20(1):1–13

    Google Scholar 

  • Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2004) Contribution of rarity and commonness to patterns of species richness. Ecol Lett 7:81–87

    Article  Google Scholar 

  • Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Editora Plantarum Ltda., Nova Odessa, São Paulo

  • Marques MI, Figueiredo AM, Santos GB, Sousa WO, Ide S, Battirola LD (2016) Diversity of Soil Beetles (Hexapoda, Coleoptera) in an Area at the Pantanal of Poconé, Mato Grosso, Brazil. Entomobrasilis 9(2):89–96

    Article  Google Scholar 

  • Martin L, Morner NA, Flexor JM, Suguio K (1986) Fundamentos e reconstrução de antigos níveis marinhos do Quaternário. Boletim Do Instituto De Geociências, Publicacão Especial 4:1–161

    Google Scholar 

  • Martínez-Hernández F, Mendoza-Fernández AJ, Pérez-García FJ, Martínez-Nieto MI, Garrido-Becerra JA, Salmerón-Sánchez E, Merlo ME, Gil C, Mota JF (2015) Areas of endemism as a conservation criterion for Iberian gypsophilous flora: a multi-scale test using the NDM/VNDM program. Plant Biosyst 149(3):483–493

    Article  Google Scholar 

  • Martins MFO, Nickele MA, Feitosa RM, Pie MR, Reis-Filho W (2021) Species list of ground-dwelling ants (Hymenoptera: Formicidae) in the Nhecolândia, Pantanal, Mato Grosso do Sul, Brazil. Papéis Avulsos De Zoologia 61:1–10

    Article  Google Scholar 

  • Means JC, Marek PE (2017) Is geography an accurate predictor of evolutionary history in the millipede family Xystodesmidae? PeerJ 5:1–31

    Article  Google Scholar 

  • Mendes ZR, Sebastiani R (2012) Cactaceae from Reserva Biológica do Alto da Serra de Paranapiacaba, Santo André, São Paulo State, Brazil. Hoehnea 39(3):409–419

    Article  Google Scholar 

  • Morrone JJ (1994) On the Identification of Areas of Endemism. Syst Biol 43(3):438–441

    Article  Google Scholar 

  • Morrone JJ (2009) Evolutionary biogeography: an integrative approach with case studies. Columbia University Press, New York

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  CAS  PubMed  Google Scholar 

  • Nelson G, Platnick NI (1981) Systematics and biogeography: cladistics and vicariance. Columbia University Press, New York

    Google Scholar 

  • Nihei SS (2006) Misconceptions about parsimony analysis of endemicity. J Biogeogr 33:2099–2106

    Article  Google Scholar 

  • Nsengimana V, Kaplin BA, Francis F, Nsabimana D (2018) Use of soil and litter arthropods as biological indicators of soil quality in forest plantations and agricultural lands: a review. Entomologie Faunistique 71:1–12

    Google Scholar 

  • Oliveira PE, Raczka M, McMichael CNH, Pinaya JLD, Bush MB (2020) Climate change and biogeographic connectivity across the Brazilian cerrado. J Biogeogr 47:1–12

    Article  Google Scholar 

  • Oliveira U, Brescovit AD, Santos AJ (2015) Delimiting areas of endemism through kernel interpolation. PLoS ONE 10(1):1–18

    Article  Google Scholar 

  • Ott T, Van Aarde RJ (2014) Coastal dune topography as a determinant of abiotic conditions and biological community restoration in northern KwaZulu-Natal, South Africa. Landsc Ecol Eng 10:17–28

    Article  Google Scholar 

  • Palheta JM, Silva CN, Neto AO, Nascimento FRD (2017) Conflicts over the use of territory in mineral Amazon. Mercator Fortaleza 16:1–18

    Article  Google Scholar 

  • Potapov AM, Tiunov AV, Scheu S (2019) Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol Rev 94(1):37–59

    Article  PubMed  Google Scholar 

  • Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian Cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230

    Article  Google Scholar 

  • Reip HS, Wesener T (2018) Intraspecific variation and phylogeography of the millipede model organism, the Black Pill Millipede Glomeris marginata (Villers, 1789) (Diplopoda, Glomerida, Glomeridae). ZooKeys 741:93–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Tabarelli M, Fonseca GA, Mittermeier RA (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conserv 16:208–214

    Google Scholar 

  • Rodríguez-Zorro PA, Ledru MP, Favier C, Bard E, Bicudo DC, Garcia M, Marquardt G, Rostek F, Sawakuchi AO, Simon Q, Tachikawa K (2022) Alternate Atlantic forest and climate phases during the early Pleistocene 41 kyr cycles in southeastern Brazil. Quatern Sci Rev 286:107560

    Article  Google Scholar 

  • Rosen BR (1988) From fossils to earth history: applied historical biogeography. In: Myers AA, Gillers PS (eds) Analytical biogeography: an integrated approach to the study of animal and plant distributions. Chapman & Hall, London, pp 437–481

    Chapter  Google Scholar 

  • Santos-Silva L, Golovatch SI, Pinheiro TG, Chagas-Jr A, Marques MI, Battirola LD (2019) Myriapods (Arthropoda, Myriapoda) in the Pantanal of Poconé, Mato Grosso, Brazil. Biota Neotrop 19(3):1–9

    Article  Google Scholar 

  • Schubart O (1942) Os Myriápodes e suas relações com a agricultura. Papéis Avulsos Do Departamento De Zoologia 22(16):205–234

    Google Scholar 

  • Schubart O (1944) Os Diplopodos de Pirassununga. Acta Zoologica Lilloana 2:321–440

    Google Scholar 

  • Schubart O (1945a) Sôbre os representantes brasileiros da família Spirostreptidae. An Acad Bras Ciênc 17(1):51–87

    Google Scholar 

  • Schubart O (1945b) Diplópodos de Monte Alegre (Municipio de Amparo, Est. des Sao Paulo). Papéis Avulsos Do Departamento De Zoologia 6(23):283–320

    Google Scholar 

  • Schubart O (1947a) Os Diplopodos da viagem do naturalista Antenor Leitao de Carvalho aos rios Araguaia e Amazonas em 1939 e 1940. Boletim Do Museu Nacional Do Rio De Janeiro / Zoologia 82:1–74

    Google Scholar 

  • Schubart O (1947b) O elemento “synanthropo” e estrangeiro entre os diplopoda do Brasil. Arthropoda (buenos Aires) 1:23–40

    Google Scholar 

  • Schubart O (1949) Os diplopoda de algumas ilhas do litoral paulista. Mem Inst Butantan 21:203–254

    Google Scholar 

  • Schubart O (1950) Novas espécies Brasileiras da família Spirostreptidae (Opisthospermophora, Diplopoda). Dusenia 1(6):331–350

    Google Scholar 

  • Schubart O (1955) Gongolôs, emboás ou diplópodos. Ciência e Cultura 7(4):214–220

    Google Scholar 

  • Schubart O (1958) Sôbre alguns Diplopoda de Mato Grosso e Goiás, Brasil e a família Spirostreptidae. Arquivos Do Museu Nacional 46:203–252

    Google Scholar 

  • Shear W (2011) Class Diplopoda de Blainville in Gervais, 1844. In: Zhang, Z.-Q. (ed.) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:159–164

    Article  Google Scholar 

  • Shear WA, Ferreira RL, Iniesta LFM, Marek P (2016) A millipede missing link: Dobrodesmidae, a remarkable new polydesmidan millipede family from Brazil with supernumerary rings (Diplopoda, Polydesmida), and the establishment of a new suborder Dobrodesmidea. Zootaxa 4178(3):371–390

    Article  PubMed  Google Scholar 

  • Sigrist MS, Carvalho CJB (2009) Historical relationships among areas of endemism in the tropical South America using Brooks Parsimony Analysis (BPA). Biota Neotrop 9(4):79–90

    Article  Google Scholar 

  • Silva JL, Vaz-de-Mello FZ (2020) Areas of endemism in the Brazilian Atlantic Forest based on the distribution of dung beetles (Coleoptera, Scarabaeidae, Scarabaeinae). Iheringia, Série Zoologia 110:1–10

    Article  Google Scholar 

  • Silva JMC, Sousa MC, Castelletti CHM (2004) Areas of endemism for passerine birds in the Atlantic forest, South America. Glob Ecol Biogeogr 13:85–92

    Article  Google Scholar 

  • Silveira MHB, Mascarenhas R, Cardoso D, Batalha-Filho H (2019) Pleistocene climatic instability drove the historical distribution of forest islands in the northeastern Brazilian Atlantic Forest. Palaeogeogr Palaeoclimatol Palaeoecol 527:67–76

    Article  Google Scholar 

  • Simonsen A (1992) Importance of Polydesmidean Millipedes for the Reconstruction of the Palaeogeographic Evolution of Eastern Gondwanaland in the Permo-Triassic. Ber. nat.-med. Verein Innsbruck 10:17–22

    Google Scholar 

  • Sket B (2008) Can we agree on an ecological classification of subterranean animals? J Nat Hist 42:1549–1563

    Article  Google Scholar 

  • Suzuki Y, Grayston SJ, Prescott CE (2013) Effects of leaf litter consumption by millipedes (Harpaphe haydeniana) on subsequent decomposition depends on litter type. Soil Biol Biochem 57:116–123

    Article  CAS  Google Scholar 

  • Szumik C, Goloboff P (2004) Areas of endemism: an improved optimality criterion. Syst Biol 53:968–977

    Article  PubMed  Google Scholar 

  • Szumik C, Aagesen L, Casagranda D, Arzamendia V, Baldo D, Claps L, Cuezzo F, Dıaz Gomez JM, Di Giacomo A, Giraudo A, Goloboff P, Gramajo C, Kopuchian C, Kretzschmar S, Lizarralde M, Molina A, Mollerach M, Navarro F, Nomdedeu S, Panizza A, Pereyra V, Sandoval M, Scrocchi G, Zuloaga F (2012) Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds, and insects from Argentina. Cladistics 28:317–329

    Article  PubMed  Google Scholar 

  • Szumik CA, Cuezzo F, Goloboff P, Chalup AE (2002) An optimality criterion to determine areas of endemism. Syst Biol 51:806–816

    Article  PubMed  Google Scholar 

  • Teodoro LM, Carvalho GML, Campos AM, Cerqueira RFV, Souza-Silva M, Ferreira RL, Barata RA (2021) Phlebotomine Sand Flies (Diptera, Psychodidae) from iron ore caves in the state of Pará, Brazil. Subterranean Biol 37:27–42

    Article  Google Scholar 

  • Tonetti VR, Cavarzere V (2017) Beta-diversity analysis of a bird assemblage of a biodiversity hot-spot within the Atlantic Forest. Ornitología Neotrop 28:281–290

    Article  Google Scholar 

  • Trevine V, Forlani MC, Haddad CFB, Zaher H (2014) Herpetofauna of Paranapiacaba: expanding our knowledge on a historical region in the Atlantic forest of southeastern Brazil. Zoologi 31(2):126–146

    Article  Google Scholar 

  • Vilhena DA, Antonelli A (2015) A network approach for identifying and delimiting biogeographical regions. Nat Commun 6:1–9

    Article  Google Scholar 

  • Walker MJ, Stockman AK, Marek PE, Bond JE (2009) Pleistocene glacial refugia across the Appalachian Mountains and coastal plain in the millipede genus Narceus: evidence from population genetic, phylogeographic, and paleoclimatic data. BMC Evol Biol 9(9):1–11

    Google Scholar 

  • Wesener T, VandenSpiegel D (2009) A first phylogenetic analysis of Giant Pill-Millipedes (Diplopoda: Sphaerotheriida), a new model Gondwanan taxon, with special emphasis on island gigantism. Cladistics 25:545–573

    Article  PubMed  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to all museum curators for their hospitality. We are in debt with the anonymous reviewers and the editor by their comments and suggestions that highly improved the quality of our manuscript. A special thanks to all colleagues who contributed in various ways with our study. This work was supported by a grant to LFMI from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant number: 162977/2020-4) and ADB (CNPq, grant number: 303903/20019-8); RSB was supported by CAPES (grant number: 88887.510007/2020-00). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001.

Funding

Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant Nos. 162977/2020-4, 303903/20019-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (Grant Nos. 001, 001), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant No. 88887.510007/2020-00).

Author information

Authors and Affiliations

Authors

Contributions

LFMI and RSB developed the idea of the manuscript, collected the data, and performed the analyses. LFMI designed the figures and graphs. LFMI, RSB, JCM, KI interpreted the results. All authors contributed equally to the text.

Corresponding author

Correspondence to Luiz F. M. Iniesta.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Nigel Stork.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iniesta, L.F.M., Bouzan, R.S., Means, J.C. et al. Where are they from and where are they going? Detecting areas of endemism, distribution patterns and conservation status of the order Spirostreptida in Brazil (Diplopoda, Juliformia). Biodivers Conserv 32, 1591–1615 (2023). https://doi.org/10.1007/s10531-023-02566-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-023-02566-2

Keywords

Navigation