Skip to main content
Log in

Body-form Evolution in the Scincid Lizard Clade Lerista and the Mode of Macroevolutionary Transitions

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The scincid lizard clade Lerista provides an exceptional model for studying the mode of substantial evolutionary transformations, comprising more than 90 species displaying a remarkable variety of body forms. Patterns of character evolution in this clade, inferred from reconstructed ancestral states, are at least partly consistent with the correlated progression model of macroevolutionary change. At each stage in the transition to a highly elongate, limb-reduced body plan, alterations to the lengths of the forelimb and hind limb are accompanied by compensatory changes in snout-vent length (or vice versa), preserving locomotory ability. Nonetheless, there is evidence for moderate dissociation of hind limb evolution in some lineages, while tail length has evolved effectively independently of the substantial alterations to the lengths of the body and limbs. This indicates a significant role of evolutionary and developmental modularity in the divergence of body form within Lerista, and emphasises the potential variability of the strength of functional constraints within organisms and among lineages. Trends toward a highly elongate, functionally limbless body plan may be attributed primarily to a combination of the interdependence of changes in snout-vent length and limb lengths and the very low probability of re-elaborating structurally reduced limbs. Similar asymmetries in the probabilities of interrelated phenotypic changes may be a significant cause of evolutionary trends resulting in the emergence of higher taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Archer, M., Hand, S. J., & Godthelp, H. (2000). Australia’s lost world. Sydney: Reed New Holland.

    Google Scholar 

  • Berger-Dell’mour, H. (1983). Der Übergang von Eshse zu Schleiche in der Gattung Tetradactylus, Merrem. Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere, 110, 1–152.

    Google Scholar 

  • Berger-Dell’mour, H. A. E. (1985). The lizard gens Tetradactylus: A model case of an evolutionary process. In K. L. Schuchmann (Ed.), Proceedings of the international symposium on African vertebrates. Systematics, phylogeny and evolutionary ecology (pp. 495–510). Bonn: Zoologisches Forschungsinstitut und Museum Alexander Koenig.

  • Bolker, J. A. (2000). Modularity in development and why it matters to evo-devo. American Zoologist, 40, 770–776.

    Article  Google Scholar 

  • Brandley, M. C., Huelsenbeck, J. P., & Wiens, J. J. (2008). Rates and patterns in the evolution of snake-like body form in squamate reptiles: Evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. Evolution, 62, 2042–2064.

    Article  PubMed  Google Scholar 

  • Budd, G. E. (2006). On the origin and evolution of major morphological characters. Biological Review, 81, 609–628.

    Article  Google Scholar 

  • Camp, C. L. (1923). Classification of the lizards. Bulletin of the American Museum of Natural History, 48, 289–481.

    Google Scholar 

  • Cogger, H. G. (2000). Reptiles and amphibians of Australia. Sydney: Reed New Holland.

    Google Scholar 

  • Dequéant, M., & Pourquié, O. (2008). Segmental patterning of the vertebrate embryonic axis. Nature Reviews Genetics, 9, 370–382.

    Article  PubMed  CAS  Google Scholar 

  • Gans, C. (1960). Studies on amphisbaenids (Amphisbaenia, Reptilia) 1. A taxonomic revision of the Trogonophinae, and a functional interpretation of the amphisbaenid adaptive pattern. Bulletin of the American Museum of Natural History, 119, 129–204.

    Google Scholar 

  • Gans, C. (1975). Tetrapod limblessness: Evolution and functional corollaries. American Zoologist, 15, 455–467.

    Google Scholar 

  • Gomez, C., Özbudak, E. M., Wunderlich, J., Baumann, D., Lewis, J., & Pourquié, O. (2008). Control of segment number in vertebrate embryos. Nature, 454, 335–339.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S. J. (1980). Is a new general theory of evolution emerging? Paleobiology, 6, 119–130.

    Google Scholar 

  • Gould, S. J. (2002). The structure of evolutionary theory. Cambridge: Belknap Press of Harvard University Press.

    Google Scholar 

  • Greco, T. L., Takada, S., Newhouse, M. M., McMahon, J. A., McMahon, A. P., & Camper, S. A. (1996). Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes and Development, 10, 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Greer, A. E. (1987). Limb reduction in the lizard genus Lerista. 1. Variation in the number of phalanges and presacral vertebrae. Journal of Herpetology, 21, 267–276.

    Article  Google Scholar 

  • Greer, A. E. (1989). The biology and evolution of Australian Lizards. Chipping Norton: Surrey Beatty and Sons.

    Google Scholar 

  • Greer, A. E. (1990). Limb reduction in the lizard genus Lerista. 2. Variation in the bone complements of the front and rear limbs and the number of postsacral vertebrae. Journal of Herpetology, 24, 142–150.

    Article  Google Scholar 

  • Greer, A. E. (1991). Limb reduction in squamates: Identification of the lineages and discussion of the trends. Journal of Herpetology, 25, 166–173.

    Article  Google Scholar 

  • Greer, A. E., Caputo, V., Lanza, B., & Palmieri, R. (1998). Observations on limb reduction in the scincid lizard genus Chalcides. Journal of Herpetology, 32, 244–252.

    Article  Google Scholar 

  • Greer, A. E., & Wadsworth, L. (2003). Body shape in skinks: The relationship between relative hind limb length and relative snout-vent length. Journal of Herpetology, 37, 554–559.

    Article  Google Scholar 

  • Heston, W. E. (1951). The “vestigial tail” mouse. A new recessive mutation. Journal of Heredity, 42, 71–74.

    PubMed  CAS  Google Scholar 

  • Huey, R. B., & Bennett, A. F. (1987). Phylogenetic studies of coadaptation: Preferred temperatures versus optimal performance temperatures of lizards. Evolution, 41, 1098–1115.

    Article  Google Scholar 

  • Kemp, T. S. (1982). Mammal-like reptiles and the origin of mammals. London: Academic Press.

    Google Scholar 

  • Kemp, T. S. (1999). Fossils and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Kemp, T. S. (2007a). The origin of higher taxa: Macroevolutionary processes, and the case of the mammals. Acta Zoologica, 88, 3–22.

    Article  Google Scholar 

  • Kemp, T. S. (2007b). The concept of correlated progression as the basis of a model for the evolutionary origin of major new taxa. Proceedings of the Royal Society B: Biological Sciences, 274, 1667–1673.

    Article  PubMed  CAS  Google Scholar 

  • Kohlsdorf, T., & Wagner, G. P. (2006). Evidence for the reversibility of digit loss: A phylogenetic study of limb evolution in Bachia (Gymnophthalmidae: Squamata). Evolution, 60, 1896–1912.

    PubMed  Google Scholar 

  • Lande, R. (1978). Evolutionary mechanisms of limb loss in tetrapods. Evolution, 32, 73–92.

    Article  Google Scholar 

  • Lee, M. S. Y. (1996). Correlated progression and the origin of turtles. Nature, 379, 812–815.

    Article  CAS  Google Scholar 

  • Levinton, J. S. (2001). Genetics, paleontology, and macroevolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Losos, J. B. (1990). Ecomorphology, performance capability, and scaling of West Indian Anolis lizards: An evolutionary analysis. Ecological Monographs, 60, 369–388.

    Article  Google Scholar 

  • Martin, H. A. (2006). Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments, 66, 533–563.

    Article  Google Scholar 

  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884.

    Article  PubMed  CAS  Google Scholar 

  • Paradis, E., Bolker, B., Claude, J., Sien Cuong, H., Desper, R., Durand, B., et al. (2008). Analyses of phylogenetics and evolution, Vers. 2.1-2. http://pbil.univ-lyon1.fr/R/ape/.

  • Presch, W. (1975). The evolution of limb reduction in the teiid lizard genus Bachia. Bulletin of the Southern California Academy of Sciences, 74, 113–121.

    Google Scholar 

  • R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org.

  • Raff, R. A. (1996). The shape of life. Chicago: University of Chicago Press.

    Google Scholar 

  • Richardson, M. K., Allen, S. P., Wright, G. M., Raynaud, A., & Hanken, J. (1998). Somite number and vertebrate evolution. Development, 125, 151–160.

    PubMed  CAS  Google Scholar 

  • Rieppel, O. (2001). Turtles as hopeful monsters. BioEssays, 23, 987–991.

    Article  PubMed  CAS  Google Scholar 

  • Schlosser, G. (2002). Modularity and the units of evolution. Theory in Biosciences, 121, 1–80.

    Article  Google Scholar 

  • Schlosser, G. (2004). The role of modules in development and evolution. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 519–582). Chicago: University of Chicago Press.

    Google Scholar 

  • Schlosser, G., & Wagner, G. P. (2004). Introduction: The modularity concept in developmental and evolutionary biology. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 1–11). Chicago: University of Chicago Press.

    Google Scholar 

  • Schluter, D., Price, T., Mooers, A. Ø., & Ludwig, D. (1997). Likelihood of ancestor states in adaptive radiation. Evolution, 51, 1699–1711.

    Article  Google Scholar 

  • Skinner, A., Lee, M. S. Y., & Hutchinson, M. N. (2008). Rapid and repeated limb loss in a clade of scincid lizards. BMC Evolutionary Biology, 8, 310.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry. New York: W. H. Freeman and Company.

    Google Scholar 

  • Thomson, K. S. (1966). The evolution of the tetrapod middle ear in the rhipidistian-amphibian transition. American Zoologist, 6, 379–397.

    PubMed  CAS  Google Scholar 

  • Thomson, K. S. (1992). Macroevolution: The morphological problem. American Zoologist, 32, 106–112.

    Google Scholar 

  • von Dassow, G., & Munro, E. (1999). Modularity in animal development and evolution: Elements of a conceptual framework for EvoDevo. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 285, 307–325.

    Article  Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.

    Article  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Wiens, J. J. (2009). Estimating rates and patterns of morphological evolution from phylogenies: Lessons in limb lability from Australian Lerista lizards. Journal of Biology, 8, 19.

    Article  PubMed  Google Scholar 

  • Wiens, J. J., Brandley, M. C., & Reeder, T. W. (2006). Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution, 60, 123–141.

    PubMed  Google Scholar 

  • Wiens, J. J., & Slingluff, J. L. (2001). How lizards turn into snakes: A phylogenetic analysis of body-form evolution in anguid lizards. Evolution, 55, 2303–2318.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mark Hutchinson and two anonymous referees for commenting on earlier versions of the manuscript, Mark Hutchinson and Marco Sacchi for providing the photographs, and the Australian Research Council and Hermon Slade Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Skinner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skinner, A., Lee, M.S.Y. Body-form Evolution in the Scincid Lizard Clade Lerista and the Mode of Macroevolutionary Transitions. Evol Biol 36, 292–300 (2009). https://doi.org/10.1007/s11692-009-9064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-009-9064-9

Keywords

Navigation