
Models and Examples

Example 1: A Conservation Law; Transport Equation

Consider a 1-lane road, where the density n = n(t, x) depends upon position x, time t. Let

f (t, x) := rate (in cars per unit time) at which cars are passing point x at time t.

Fix (t, x). Then

f (t, x)∆t ≈ #{cars passing x during time interval [t, t + ∆t]},
n(t, x)∆x ≈ #{cars on stretch [x, x + ∆x] at time t}.

So,
[n(t + ∆t, x) − n(t, x)]∆x ≈ −[ f (t, x + ∆x) − f (t, x)]∆t .

In the limit, get
∂n
∂t

+
∂ f
∂x

= 0 ,

a conservation law. Suppose f = f (n) (i.e., flux f depends only upon car density). Then,

∂ f (n)
∂x

= f ′(n)
∂n
∂x

,

and our conservation law becomes the transport equation

∂n
∂t

+ f ′(n)
∂n
∂x

= 0 . (1)

Aspects of (1):

• 1st-order

• linear if f ′(n) ≡ c (constant); nonlinear if truly dependent upon n

• time-varying

• a differential equation because involves derivatives of unknown density n(t, x)

• partial because n = n(t, x) relies on more than one independent variable

• can think of this PDE on a bounded or unbounded domain; need initial density profile
n(0, x) to solve IC, perhaps conditions at ”boundary” of road

Example 2: Conservation Law in 3D/Heat Equation

Consider an open, simply-connected region Ω in R3 and an open ball B ⊂ Ω with boundary
∂B. Let
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ρ(t, x): density of some substance (amount per unit volume)

⇒

$
B
ρ(t, x) dV gives total amount inside B

φ(t, x): flux vector
direction corresponds to flow at position x, time t
magnitude has units amount per unit area per unit time
⇒ For x ∈ ∂Ω, φ(t, x) ·n gives outward (n oriented appropriately) flow rate at x

f (t, x): creation (when positive) rate, in amount per unit volume per unit time

⇒

$
B

f (t, x) dV gives total amount created inside B

Assuming conservation, we have

d
dt

$
B
ρ(t, x) dV =

$
B

f (t, x) dV −
	

∂B
φ(t, x) · n dσ . (2)

By the Divergence Theorem, 	
∂B

φ · n dσ =

$
B
∇ · φ dV .

Passing the time derivative through the integral on the left-hand side of (??), and accumulating
everything into one triple integral, we have$

B
(ρt + ∇ · φ − f ) dV = 0 .

Since this global relation holds for all balls B inside Ω, we conclude the local (PDE) relationship

∂ρ

∂t
+ ∇ · φ = f .

Many substances have a flux that is proportional to density, flowing down the gradient, as in

φ(t, x) = −c(x)∇ρ(t, x) .

(The coefficient c is often assumed to be constant.) Employing this assumption we get the
diffusion equation (inhomogeneous if f . 0)

∂ρ

∂t
− ∇ · [c(x)∇ρ] = f . (3)

Heat is one substance that is closely modeled by (3). Specifically, if u(t, x) is the temperature
in some medium, and γ is the (constant) thermal diffusivity, then we get the heat equation

∂u
∂t
− γ∆u = f , (4)

Aspects:
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• linear, 2nd-order, homogeneous or not depending upon if f ≡ 0

• equilibrium version has ∂u/∂t = 0 (u constant in time)

– equilibrium leads to Poisson eqn.: −∆u = f/γ.

– equilibrium and homogeneous leads to Laplace eqn.: ∆u = 0.

• 4 independent variables, x = (x, y, z), t (so time-varying)

– 1st-order in t, so will require 1 IC (general principle)

– 2nd-order in x, y, z, so will require 2 BCs for each (general principle)

• lower-dimensional versions of heat equation

Example 3: Laplace’s Equation in 2D

Consider a 2D N-by-N mesh with horizontal/vertical spacing h. At grid point (xi, y j) = (ih, jh)
stands a person with (scalar) opinion pi j, one that may be shared only with immediate neigh-
bors.

Wishing to minimize conflict, each person is willing to take an opinion which is the average of
his neighbors:

pi j =
1
4

(pi+1, j + pi−1, j + pi, j+1 + pi, j−1) ,

or
p(x, y) =

1
4

[p(x + h, y) + p(x − h, y) + p(x, y + h) + p(x, y − h)] ,

which may be rearranged as

p(x − h, y) − 2p(x, y) + p(x + h, y)
h2 +

p(x, y − h) − 2p(x, y) + p(x, y + h)
h2 = 0 .

Letting h→ 0, we get Laplace’s equation

∂2p
∂x2 +

∂2p
∂y2 = 0 .

Aspects:

• 2nd-order, linear, homogeneous

• equilibrium (i.e., not varying with time)

• Difference equation cannot apply on boundary of mesh. Need boundary conditions to
solve (both difference equation and PDE).

• ‘del’ and ∆ notation for Laplace’s equation

• 3D version

• Poisson’s equation (nonhomogeneous version of Laplace’s)

3
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Example 4: Korteweg-de Vries equation

The KdV equation is
∂u
∂t
− 6u

∂u
∂x

+
∂3u
∂x3 = 0 .

Ask

• linear or NL?

• order?

Note: some authors may call this homogeneous, but homogeneity is important mainly when
equation is linear.

Example 5: Wave Equation in 1D

Let

u = u(t, x): displacement from equilibrium at position x, time t
ρ = ρ(t, x): density of string (mass/length)
ρ0 = ρ0(x): density at x when string in equilibrium
T = T(t, x): tension (force) right of x exerts on left (assume directed along tangent)
θ = θ(t, x): angle with horizontal

Assumptions:

(i) displacements u(t, x) are small

(ii) no displacement other than transversal

For each a, b, horizontal tension components are equal:

T(t, b) cos(θ(t, b))−T(t, a) cos(θ(t, a)) = 0 ⇒ T(t, x) cos(θ(t, x)) = τ(t) (independent of x)

Conservation of mass:

Let a, b be arbitrary along x-axis between endpoints

mass between x = a, x = b =

∫ b

a
ρ(t, x)

√
1 + ux(t, x)2 dx =

∫ b

a
ρ0(x) dx

For last equality have used

4
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• assumption (ii) above

• conservation of mass

a, b arbitrary ⇒ ρ(t, x)
√

1 + ux(t, x)2 = ρ0(x)

Newton’s 2nd law:

• “time rate of change of momentum equals sum of external forces”

• applied to vertical direction:

Total momentum =

∫ b

a
ut(t, x)ρ(t, x)

√
1 + ux(t, x)2 dx =

∫ b

a
ut(t, x)ρ0(x) dx,

which implies

d
dt

(total momentum between a, b)

= T(t, b) sin(θ(t, b)) − T(t, a) sin(θ(t, a)) − g
∫ b

a
ρ0(x) dx (g is gravity)

= T(t, b) cos(θ(t, b)) tan(θ(t, b)) − T(t, a) cos(θ(t, a)) tan(θ(t, a)) − g
∫ b

a
ρ0(x) dx

= τ(t)[ux(t, b) − ux(t, a)] − g
∫ b

a
ρ0(x) dx (Note: ux(t, x) = tan(θ(t, x))

=

∫ b

a
[uxx(t, x)τ(t) − gρ0(x)] dx .

Under suitable assumptions, pass derivative (in t) through momentum integral (in x):

d
dt

∫ b

a
ut(t, x)ρ0(x) dx =

∫ b

a
utt(t, x)ρ0(x) dx

Global Law:

We have∫ b

a
utt(t, x)ρ0(x) dx =

∫ b

a
[uxx(t, x)τ(t) − gρ0(x)] dx (global law)

a, b arbitrary ⇒ ρ0(x)(utt + g) = τ(t)uxx (local law).

Possible additional assumption: gravity is not a factor. Then we have

ρ0(x)utt = τ(t)uxx .

Employing “small displacements” assumption (ii) above, which suggests τ(t) ≈
τ0 (a constant), we get the one-dimensional (in space) wave equation

utt = c2
0(x)uxx , (5)

where c2
0(x) := τ0/ρ0(x) > 0.
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Example 6: General nth -order PDE

General nth -order PDE in 2 independent variables (t, x) has form

F
(
∂nu
∂tn ,

∂nu
∂tn−1∂x

, . . . ,
∂nu
∂xn ,

∂n−1u
∂tn−1

,
∂n−1u
∂tn−2∂x

, . . . ,
∂n−1u
∂xn−1

, . . . ,
∂u
∂t
,
∂u
∂x
,u

)
= 0 .

If linear in the highest-order derivatives (i.e., coefficients of said derivatives rely only on
ind. vars. and lower-order derivatives of u), this PDE is said to be quasi-linear.

If the PDE is (fully) linear (specializing to the 2nd-order case), it takes the form

a2,0(t, x)
∂2u
∂t2 + a1,1(t, x)

∂2u
∂t∂x

+ a0,2(t, x)
∂2u
∂x2 + a1,0(t, x)

∂u
∂t

+ a0,1(t, x)
∂u
∂x

+ a0,0(t, x)u = f (t, x) ,

or, written in operator form,

L[u](t, x) = f (t, x) ,

L = a2,0
∂2

∂t2 + a1,1
∂2

∂t∂x
+ a0,2

∂2

∂x2 + a1,0
∂
∂t

+ a0,1
∂
∂x

+ a0,0 ,
(6)

where L, called a linear (2nd-order) differential operator, acts on suitably smooth functions

u(t, x). The PDE (6) is homogeneous if f ≡ 0, nonhomogeneous otherwise.

Important distinctions in DEs:

• order

• ordinary vs. partial

• time-dependent vs. equilibrium/steady-state

• one vs. multiple spatial dimensions

• linear vs. NL

– linear may always be written in operator form L[u] = f

– properties which make L a linear operator

– superposition

• homogeneous vs. inhomogeneous: for homogeneous (linear) problems L[u] = 0:

– solutions form subspace of some vector space consisting of functions
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– this subspace called kernel of L (like nullspace of a matrix)

• single vs. system

– System Example: Navier-Stokes equations (1.4), p. 3

– systems not explored in text

• real vs. complex

– Example ((1.9) in text) of complex: Schrödinger’s equation

i~
∂u
∂t

= −
∂2u
∂x2 + V(x)u

Nondimensionalization (Incomplete; Skipped)

We seek to

• reduce number of parameters which determine solution of problem

• properly scale variables so that

– relative magnitude of various terms is revealed

– perturbation methods become available

Cf. Lin and Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences.

Example 7:

Consider our general 1D wave equation, including gravitational effects, on a bounded interval

ρ0(x)(utt + g) = τ(t)uxx , x ∈ [0, `], t > 0 ,

subject to u(t, 0) = 0, u(t, `) = 0, u(0, x) = f (x), ut(0, x) = g(x) .

 (7)

Assume ρ0(·), τ(·) are constant.

Goal: Assess negligibility of gravity term.

Procedure:

1. List all parameters and variables, with their dimensions.

Here,
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name units name units
u length ρ (mass)(length)−1

τ (mass)(length)(time)−2 g (length)(time)−2

x length t time
` length y0 length (maximum initial displacement of string)

2. Find dimensionless combinations of parameters/variables

Here, we have

u
y0
≤ 1 ⇒ set ū :=

u
y0
, and

x
`
≤ 1 ⇒ set x̄ :=

x
`
.

Look for combination of form τagbρc`dt, yielding units

(time)1−2a−2b(mass)a+d(length)a+b+d−c
⇒


a + c = 0
2a + 2b = 1
a + b + d − c = 0

 ⇒


c = −a
b = −a + 1

2

d = −a − 1
2

 .
That is, τag−a+1/2ρ−a`−a−1/2t is dimensionless for each a. We might take a = 1/2, and set

t̄ :=
t
`

√
τ
ρ
.

...

Meaning of ‘solution’

Background concepts:

• domain D in ‘space’ of independent variables

• open set

• class Cn of functions on an open set D

• connected set

• simply connected set

We say a function ũ(t, x) is a (classical, or strong, though I think there is some discrepancy in
meaning for the two terms) solution to the linear PDE

L[u] = f (t, x)

8
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on D, an open region of (t, x)-space, if ũ has sufficiently many derivatives in D that L[ũ] makes
sense pointwise in D, and the equation is satisfied at each point of D when u = ũ. One often expects
to find a solution u which has continuous partial derivatives up to the order of the differential
operator L. Though this is not always the case, it makes sense to expect most classical solutions to
be found in

C
n(D) :=

{
u : D→ R (or C)

∣∣∣ all derivatives of u of order ≤ n exist and are continuous throughout D
}
.

Example 8: 1D Wave Equation on Bounded Interval

Consider the 1D wave equation

utt = c2uxx , x ∈ [0, `], t > 0 . (8)

The following are classical solutions:

un(t, x) = cos
(nπct
`

)
sin

(nπct
`

)
, n = 1, 2, 3, . . . ,

v(t, x) = αx + βt + γ , α, β, γ ∈ R

etc.

Remarks:

• Note that each is in C2(D)—in fact, in C∞(D)—where D is the region of the (t, x)-plane
given by

{
(t, x)

∣∣∣ 0 < x < `, t > 0
}
.

• While there are many solutions of (8), they become less numerous as we impose condi-
tions. The un also satisfy both the BCs (of Dirichlet type)

u(t, 0) = 0, u(t, `) = 0, t > 0,

but not v. Adding ICs

u(0, x) = f (x) , ut(0, x) = g(x) , x ∈ [0, `],

to the problem is enough to yield uniqueness of solution.

It is even possible, for a given choice of BCs, ICs, that the unique solution is no longer a
classical one. For example, when ` = 1 and the ICs are for a plucked string

u(0, x) =

 x , 0 ≤ x < 1/2
1 − x , 1/2 ≤ x ≤ 1

 , ut(0, x) = 0 , x ∈ [0, 1].

9
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Linearity

Definition 1. A mapping (transformation, operator, function) L : V →W from a vector spaceV into
a vector spaceW is said to be linear if, for every u, v ∈ V and each pair of scalars α, β,

L(αu + βv) = αLu + βLv .

1st Order Problems/Method of Characteristics

Example 9: A quirk in PDEs (purpose(?) of Section 2.1 in Olver)

Consider the DE ut = 0 as an

• ODE (really u′ = 0)
Answer?: u(t) = ξ (i.e., value independent of t). Not always!
In fact, it depends upon the domain in which problem is posed. If posed on single
connected interval, answer is correct. If posed on two disjoint intervals, u may equal two
different constants, one in each interval

• PDE in two independent variables (t, x)
Answer?: u(t, x) = f (x). Again, not always!
Consider the domain of definition to be tx-plane minus the negative x-axis. Then PDE
has (classical) solution

u(t, x) =


0, x > 0
−x2, x ≤ 0, t < 0,
x2, x ≤ 0, t > 0.

Result 2 (Exercise 2.1.9). Suppose D ⊂ R2 is an open set having the property that its intersection
with any line x = constant is either empty or a connected interval. For any classical solution u(t, x)
to

∂u
∂t

= 0 , (t, x) ∈ D,

u(t, x) = f (x) (i.e., independent of t).

Remarks:
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• In the case of Result ??, have standing waves.

• For what follows, problems are stated on entire region of tx-plane in which t ≥ 0 (a region
like that described in Result ??.

Consider a linear transport equation

ut + c(t, x)ux = 0 , x ∈ R, t > 0. (9)

Note that

• solution u(t, x) has graph which is a surface in R3. For each point (t, x) (in the domain), there
corresponds a point (t, x,u(t, x)) on the surface.

• A curve x = x(t) of points in tx-plane will have a corresponding collection of points
(t, x(t),u(t, x(t)))—a parametrized curve in R3 parametrized by t—on surface.

• For domain points along such a fixed curve, chain rule gives that

d
dt

u(t, x(t)) =
∂u
∂t

+
∂u
∂x

dx
dt

= ut +

(
dx
dt

)
ux .

If we can solve the ODE
dx
dt

= c(t, x)

for x(t), then the solution u(t, x) of (9) will satisfy

d
dt

u(t, x(t)) = 0 ⇒ u(t, x(t)) = constant

when restricted to domain points along the characteristic curve x(t). According to counting principle,
a unique solution should require an initial condition, say, at t0 = 0:

u(0, x) = ϕ(x), x ∈ R.

If such a ϕ is specified, finding the value of u(t, x) anywhere in tx-plane amounts to tracing along
the characteristic curve to the x-axis (assuming it gets there) and evaluating ϕ at the point of
intersection.

Example 10: Problem: ut + cux = 0 (c a constant), u(0, x) = sin x

Here
dx
dt

= c ⇒ x(t) = ct + ξ ,

so the characteristic curves are lines with slope c: x = ct +ξ, one for each choice of ξ. For each
(t, x) in the plane, the characteristic line has x-intercept ξ = x − ct, yielding solution

u(t, x) = sin(x − ct) .

11
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Example 11: Problem: ut + 3x2/3ux = 0, u(0, x) = ϕ(x)

Characteristics solve
dx
dt

= 3x2/3
⇒ x = (t + ξ)3 .

So, given any valid (t, x) determine the characteristic (by finding the appropriate value of ξ)
on which it lies:

ξ = x1/3
− t ,

and the initial value x0 = x(t0) (assume t0 = 0) of that characteristic:

x0 = (0 + ξ)3 = (x1/3
− t)3 .

Then
u(t, x) = ϕ((x1/3

− t)3) .

Employ Mathematica or Sage to view characteristics, the surface z = u(t, x), and a movie of the
traveling waves (moving with nonuniform speed); seecharacteristics.nborcharacteristics2.nb.

The method of characteristics may be applied to the nonhomogeneous transport equation

ut + c(t, x)ux = b(t, x) , x ∈ R, t > 0, subject to u(0, x) = ϕ(x), x ∈ R . (10)

Again, the characteristics are curves x = x(t) in the tx-plane satisfying

dx
dt

= c(t, x) ,

and along a characteristic x(t),

d
dt

u(t, x(t)) = ut + c(t, x(t))ux = b(t, x(t)) .

Thus, the solution u (when it exists) is not constant along characteristics for the nonhomogeneous
PDE (10), but satisfies

u(t, x(t)) = ϕ(x(t0)) +

∫ t

0
b(τ, x(τ)) dτ .

Example 12: Nonhomogeneous Transport Equation with Extra Term

To solve

ut + ux + u = ex+2t, x ∈ R, t > 0, subject to u(0, x) = ϕ(x), x ∈ R

12
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using the characteristics x(t) = t + ξ, we note that

dy
dt

+ y = ex(t)+2t ,

where y = u(t, x(t)). Employing the integrating factor µ = et, we get

ety(t) − y(0) =

∫ t

0
ex(τ)+3τ dτ = eξ

∫ t

0
e4τ dτ =

1
4

eξ (e4t
− 1) .

But ξ = x − t, and y(0) = u(0, x(0)) = u(0, ξ) = ϕ(x − t). Thus,

u(t, x) = ϕ(x − t)e−t +
1
4

(
ex+2t

− ex−2t
)
.

Initial and Boundary Conditions

From ODEs, recall that a differential equation alone may have infinitely many solutions. The
general solution of an nth order (linear) DE generally involves n arbitrary constants. To nail down
a unique solution requires n additional (initial) conditions. Peter Olver offers the following general
guideline concerning the general solution of an nth order PDE:

Counting principle (rough guide):

The solution of an nth order (linear) PDE in m independent variables depends on n
arbitrary functions of m − 1 variables.

To nail down a unique solution of L[u] = f requires additional conditions. There are several
possibilities:

• Initial Conditions (ICs)

– type studied in MATH 231

– needed only for dynamical problems

– Specify values of u and its derivatives u′, u′′, . . . , u(n−1) at a single point t0. The number
of ICs corresponds to the highest order of time derivative in PDE.

• Boundary conditions (BCs) (most commonly in the case n = 2): Specify values of u and/or
its derivatives at boundary points.

Mention different senses of word “bounded”

– bounded domain

13
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– bounded solution

When domain of definition is bounded, the BCs may be of:

1. Dirichlet type: values of u on boundary are specified.
Example 13: Heat Problem on a Uniform Bar

ut = uxx, a < x < b, t > 0,

subject to IC u(0, x) = ϕ(x) and BCs

u(t, a) = f (t), u(t, b) = g(t).

If both f , g are identically zero, call these homogeneous Dirichlet BCs

2. Neumann type: values of normal derivative of u are specified.
Example 14: 1D Heat Problem with Neumann BCs

ut = uxx, a < x < b, t > 0,

subject to IC u(0, x) = ϕ(x) and BCs

ux(t, a) = f (t), ux(t, b) = g(t).

When f , g are 0, have homogeneous Neumann BCs which, for heat problem, correspond
to endpoints being insulated. In 2-D, corresponding problem might look like this:
Example 15: 2D Heat Problem with Homogeneous Neumann BCs

ut = ∆u, in R :=
{
(x, y)

∣∣∣ x2 + y2 < 1
}
, t > 0,

subject to IC u(0, x, y) = ϕ(x, y) and BCs

∂u
∂n

:= ∇u · n = 0 on ∂R.

3. Mixed type

4. Robin type
Will not see often in this course.
Example 16:
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ut = uxx, a < x < b, t > 0,

subject to IC u(0, x) = ϕ(x) and BCs

ux(t, a) + ku(t, a) = f (t), ux(t, b) + hu(t, b) = g(t).

Such a condition with k, h > 0 models heat exchange resulting from the ends of bar
being placed in a reservoirs at temperatures f (t), g(t) respectively. See also Newton’s
law of cooling.

When domain of definition is unbounded:

Often we’ll require solution to remain bounded within D (i.e., |u(t, x)| ≤M)

Consequences of Linearity

From ODEs, recall:

• Superposition. If L is a linear (ordinary) differential operator, and u1, u2 solve the ODEs

L[u] = f1 and L[u] = f2 ,

then ũ := u1 + u2 solves the ODE L[u] = f1 + f2.

• Homogeneous linear nth -order ODEs have a general solution

yH = c1y1(t) + · · · + cnyn(t) (11)

that involves n arbitrary constants c1, . . . , cn.

– Linear transformations fromRn toRm are represented by matrices, with input 7→ output
map given by x 7→ Ax. To each m-by-n matrix A is associated a nullspace, the set{

x ∈ Rn
∣∣∣ Ax = 0

}
,

along with a number known as its nullity, nullity (A) = dim (null (A)). Call null (A) the
kernel of the associated linear transformation. A basis of this kernel will consist of
` = nullity (A) independent vectors {u1, . . . ,u`}; the general form of an element of the
nullspace/kernel has the form

c1u1 + · · · + c`u`

(` = nullity (A) degrees of freedom).
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– For a linear ordinary differential operator L, call the space of solutions to L[u] = 0 the
kernel of L, ker (L). A general element in ker (L) has the form (11).

– If xp is any solution of the matrix problem Ax = b (a nonhomogeneous problem) and
xH is in the nullspace (kernel) of A, then xp + xH is also a solution of Ax = b.

Likewise, if yp is a solution of the nonhomogeneous linear ODE L[u] = f , and yH ∈

ker (L), then yp + yH is a solution of L[u] = f as well. Generally speaking, if L[u] = f has
any solution, then it has infinitely many.

Fourier Transform (Incomplete; Skipped)

Definition 3. Suppose f is a piecewise continuous (perhaps complex-valued) function on R, with
limx→±∞ f (x) = 0. We define the Fourier transform f̂ (k) = F ([) f (x)] by

f̂ (k) :=
1
√

2π

∫
∞

−∞

f (x)e−ikx dx,

whenever this integral exists for each real k. In such instances, the inverse Fourier transform is
given by

F
−1 ([) f̂ (k)] :=

1
√

2π

∫
∞

−∞

f̂ (k)eikx dk.

Remarks:

• The Fourier transform is a linear operator on a space of functions. See Exercise 7.1.9 concern-
ing the inverse Fourier transform.

• Relationship to Fourier series:

• We would like to say f (x) = F −1 ([) f̂ (k)]. In fact, we have

Theorem 4. Suppose f ∈ C1(R), and f (x)→ 0 as |x| → ∞ quickly enough so that the integral
defining its Fourier transform f̂ (k) converges absolutely for each k ∈ R. Then at each x ∈ R
the inverse Fourier transform F −1 ([) f̂ (k)] converges to

1
2

[ f (x−) + f (x+)] ,

which equals f (x) whenever x is a point of continuity for f .

• Symmetry in definitions of Fourier and inverse Fourier transforms

16
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– no uniformity amongst authors on actual definition of Fourier transform

– If f̂ (k) = F ([) f (x)], then ˆˆ (k)f = F ([) f̂ (x)] = f (−k).

–

Cauchy Problem for 1D Wave Equation

We consider the Cauchy problem

utt = c2uxx, subject to u(0, x) = φ(x), ut(0, x) = ψ(x). (12)

There is another form of the wave equation (called canonical form), obtained via the change of
variables

ξ = x + ct, τ = x − ct,

(to characteristic coordinates) that is more readily-solved. Applying this transformation,

ux = uξ
∂ξ
∂x

+ uτ
∂τ
∂x

= uξ + uτ.

⇒ uxx =
∂
∂x

uξ +
∂
∂x

uτ

=

(
∂
∂ξ

uξ

)
∂ξ
∂x

+

(
∂
∂τ

uξ

)
∂τ
∂x

+

(
∂
∂ξ

uτ

)
∂ξ
∂x

+

(
∂
∂τ

uτ

)
∂τ
∂x

= uξξ + 2uξτ + uττ,

and, similarly,

ut = cuξ − cuτ

⇒ utt = c
(
uξξ

∂ξ
∂t

+ uτξ
∂τ
∂t

)
− c

(
uξτ

∂ξ
∂t

+ uττ
∂τ
∂t

)
= c(cuξξ − cuτξ) − c(cuξτ − cuττ)

= c2(uξξ − 2uξτ + uττ).

Thus, the PDE utt − c2uxx = 0 becomes

−4c2uξτ = 0, or simply uξτ = 0.

The reason for desiring this form is that we can simply integrate twice:

uξ =

∫
uξτ dτ =

∫
0 dτ = f (ξ). ( f an arbitrary function)

⇒ u =

∫
f (ξ) dξ

= F(ξ) + G(τ)

= F(x + ct) + G(x − ct) (back in original coordinates),

17
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where F and G are arbitrary functions. Note that

ut(x, t) = cF′(x + ct) − cG′(x − ct),

so

φ(x) = u(0, x) = F(x) + G(x)

ψ(x) = ut(0, x) = cF′(x) − cG′(x)
⇒

 cφ′(x) = cF′(x) + cG′(x)

ψ(x) = cF′(x) − cG′(x)
(assuming φ is differentiable)

⇒


F′(x) =

1
2c

[cφ′(x) + ψ(x)]

G′(x) =
1
2c

[cφ′(x) − ψ(x)]

⇒


F(x) = F(0) +

1
2c

∫ x

0
[cφ′(z) + ψ(z)] dz

G(x) = G(0) +
1
2c

∫ x

0
[cφ′(z) − ψ(z)] dz

So, we have

u(t, x) = F(x + ct) + G(x − ct)

= F(0) + G(0) +
1
2c

{∫ x+ct

0
[cφ′(z) + ψ(z)] dz +

∫ x−ct

0
[cφ′(z) − ψ(z)] dz

}
= φ(0) +

1
2c

{∫ x+ct

0
[cφ′(z) + ψ(z)] dz +

∫ 0

x−ct
[ψ(z) − cφ′(z)] dz

}
= φ(0) +

1
2c

∫ x+ct

x−ct
ψ(z) dz +

1
2

[∫ x+ct

0
φ′(z) dz −

∫ 0

x−ct
φ′(z) dz

]
= φ(0) +

1
2c

∫ x+ct

x−ct
ψ(z) dz +

1
2

[
φ(x + ct) − φ(0) − φ(0) + φ(x − ct)

]
=

1
2

[
φ(x + ct) + φ(x − ct)

]
+

1
2c

∫ x+ct

x−ct
ψ(z) dz.

This is d’Alembert’s formula for the solution of the Cauchy problem for the wave equation.

Note the form of the solution: left and right-travelling waves, similar to solutions of the transport
equation. Note also that the wave operator is the composition of two transport equation operators
in opposite directions:

∂2

∂t2 − c2 ∂2

∂x2 =

(
∂
∂t

+ c
∂
∂x

) (
∂
∂t
− c

∂
∂x

)
.

Transport Equation: Finite Difference Solutions

Discuss finite difference approximations to derivatives:

• 1st derivative: forward/backward differences, centered difference

18
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• 2nd derivative: centered difference

Example 17: An Ordinary BVP

Consider the (ordinary, not partial) BVP

y′′ + y = 0, x > 0 subject to y(0) = y(π) = 1.

Note: y = sin x is a soln.

Introduce mesh on [0, π]: x j = j∆x, j = 0, 1, ...,N + 1.
Notation for approximate soln. at mesh points: yi y(xi)
Finite difference eqn (using 2nd-order approx for y′) for the yi j:

yi−1 − 2yi + yi+1

2h
+ yi = 0 ⇒ yi−1 + 2(h − 1)yi + yi+1 = 0, i = 2, ...,N − 1.

Get similar equations employing BCs at i = 1, i = N
Write as matrix problem.
Solve matrix problem—see file odeBVPfinDiffs.m
Note:

• soln looks like zero function; indeed, zero is a solution of BVP

• problem has many solutions, so cannot fault method

Example 18: Finite Differences on the Transport Equation

from Section 3.1 in G. Sewell, The Numerical Solution of Ordinary and Partial DEs, 2nd Ed.

Consider elementary transport problem (c > 0, constant)

ut + cux = 0, x ∈ R, t > 0, subject to u(0, x) = φ(x).

Know (from theory) soln. is right-traveling wave with form identical to φ(x).

Attempt to solve using finite difference schemes:

Argue that it makes sense to emply forward difference approx. to ut

Several approaches involving ux:

1. Use centered difference formula

ui+1, j − ui j

∆t
= −c

ui, j−1 − 2ui j + ui, j+1

2δx
⇒ ui+1, j = ui j − α(ui, j+1 − ui, j−1),
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where α = c∆t/(2∆x).

For the case c = 1, see the file finDiffsTranport1.m. Notice

• does not ”travel”

• develops ”artifacts” immediately (unstable)

Q: What is wrong?
Consider same problem posed on x-interval [0, 1]

• now need BC
Argue BC at x = 0 is relevant, but one at x = 1 is irrelevant (true because soln is
right-traveling wave)
Say: value of u at x = 0 is upwind of values at other x-values

• Display the stencil. Point out that, without BC at x = 1, cannot solve for ui j at final
j’s when i > 0.

2. Use backward difference formula
Method, called upwind scheme, is motivated by previous attempt
The difference eqn:

ui+1, j − ui j

∆t
= −c

ui j − ui, j−1

∆x
⇒ ui+1, j = βui, j−1 + (1 − β)ui j, where β = c

∆t
∆x
.

Display stencil.
For case c = 1, see file finDiffsTranport2.m.
Try out several choices of ∆t, leaving ∆x fixed.
Note that

• We get similar “artifacts” as method above when ∆t > ∆x(= 0.2).
More generally, this happens when ∆t > ∆x/c, for if we write r := ∆x/∆t with r < c,
then the point (0, x− ct) is outside the triangle with vertices (0, x− rt), (0, x) and (t, x).
Essentially, the part of IC allowed to contribute to soln at (t, x) consists of points
which are outside the domain of dependence, and do not enough time to reach (t, x).

[Sewell] The true soln depends on the value of phi(x) at the point x − ct . . . If
x − ct lies outside the interval [x − rt, x], . . . then the approx. solns cannot
possibly be convergint to the true soln, in general, because we can change
the IV at x − ct, changing the true soln but not the limit of the approx. solns.

• We get expected soln when ∆t = ∆x/c

• We get ”diffused” traveling wave soln (somewhat expected) if ∆t < ∆x/c.
Two interesting quotes from Sewell:

If, on the other hand, c < r, the student may draw the incorrect conclusion
that the method is still unstable, because the IVs may be changed at points
inside the domain of dependence of the approx. soln, but not at x−ct, thereby
changing the approx. solns and not the true soln. The error in this reasoning
is that changing the approx. solns does not necessarily change their limit.
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and

It is interesting to note that using an upwind difference approx. to ux is
equivalent to adding an “artificial diffusion” term, |c|∆x/(2uxx, to the transport
problem . . . In other words, upwinding has the same smoothing effect as
adding a small amount of diffusion to the convection model.

Separation of Variables: Part I

Review of linear 1st order systems of ODEs y′ = Ay:

• Assume solution of form y(t) = eλtv. Deduce that nontrivial solutions of this form arise if
and only if (λ,v) is an eigenpair of A.

• If A has a “full set of eigenvectors”, v1, . . . , vn associated with eigenvalues λ1, . . . , λn, general
solution is

y(t) = c1eλ1tv1 + c2eλ2tv2 + · · · + cneλntvn .

Theorem 5 (Spectral Theorem for Real Matrices). If A is a symmetric real matrix, then it has a
full set of eigenvectors. Moreover, the eigenvalues of A are all real numbers, and eigenvectors
associated with distinct eigenvalues are orthogonal—that is, vi ·v j = 0 whenever λi , λ j.

• Why is orthogonality nice?
Suppose have basis S = {v1, . . . ,vn} of Rn, and wish to write some vector u as linear combi-
nation of vectors in S

u = c1v1 + c2v2 + · · · + cnvn . (13)

u = c1v1 + c2v2 + · · · + cnvn .

The usual thing: solve the matrix problem

v1 v2 · · · vn

↓ ↓ · · · ↓



c1
...

cn

 = u .

If S is orthogonal basis, can get c j, j = 1, . . . ,n, by dotting both sides of (13) with v j:

u ·v j = (c1v1 + c2v2 + · · · + cnvn) ·v j = · · · = c j(v j ·v j) ⇒ c j =
u ·v j

v j ·v j
.
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Vector Space L2(a, b)

• Elements (“vectors”) are “functions” defined on a domain [a, b] for which
∫ b

a | f (x)|2 dx < ∞

• Define inner product beteen f , g ∈ L2(a, b) to be
〈

f , g
〉

:=
∫ b

a
f (x)g(x) dx.

– Meaning of z, where z = α + βi ∈ Cwith α, β ∈ R

– Compare with usual dot product in Cn

v ·w :=
n∑

j=1

v jw j , where v = (v1, . . . , vn), w = (w1, . . . ,wn) ∈ Cn .

Elements in Cn have n components; those in L2(a, b) have infinitely many.

– Complex numbers z = α + βi

∗ plotted in plane

∗ modulus |z|: intuitively ought to equal
√
α2 + β2

Note that zz = (α + βi)(α − βi) = α2 + β2 =: |z|2

– Call f , g orthogonal, writing f ⊥ g, if
〈

f , g
〉

= 0.

– We define length (or norm) in Rn via dot product ‖v‖ =

√√√ n∑
j=1

v2
j =

√
v ·v.

Similarly, define norm in L2(a, b): ‖ f ‖2 :=
√〈

f , f
〉
.

Thus, membership in L2(a, b) means
∫ b

a | f (x)|2 dx =
∫ b

a f (x) f (x) dx = ‖ f ‖22 < ∞.

A norm on a vector spaceV is a function which satisfies the following properties:

1. Nonnegativity: ‖v‖ ≥ 0 for all v ∈ V.

2. Positive Definiteness: ‖v‖ = 0 if and only if v = 0.

3. Homogeneity: ‖αv‖ = |α| ‖v‖ for all v ∈ V and all scalars α.

4. Triangle Inequality: ‖u + v‖ ≤ ‖u‖ + ‖v‖ for all u, v ∈ V.

Strictly speaking, ‖ · ‖2 is not a norm, lacking positive definiteness. (Give example of a
function f which is nonzero only on a set of measure zero, so ‖ f ‖2 = 0.) If we consider
such functions as indistinguishable from zero, ‖ · ‖2 becomes a norm.

– note simplification (for inner products in both Cn, L2(a, b)) when objects are real

• For each nonnegative integer n, the space Cn(a, b) of n-times continuously differentiable func-
tions defined for a ≤ x ≤ b is a subspace of L2(a, b).

Another popular norm used for continuous fns: ‖ · ‖∞.

– its definition

– visual depiction
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– truly a norm (satisfies all 4 properties)

– undesirable characteristics:

1. not applicable to as many fns as ‖ · ‖2
2. does not arise from any inner product

Recasting linear ODEs in operator form with spatial operator

Examples:

1. transport equation: ∂u/∂t = A[u], where A[u] = −c(du/dx)

2. 1D heat equation
2D heat equation

3. 3D wave equation

Example 19: IBVP for 1D Heat Equation

Consider the Dirichlet heat problem on a bounded interval

ut = uxx, 0 < x < 1, t > 0, subject to u(0, x) = f (x), u(t, 0) = u(t, 1) = 0.

As with the 1st-order linear system of ODEs y′ = Ay, propose (separable) solutions of the form

u(t, x) = eλtv(x)

and deduce that, if nontrivial solutions of this form exist, then v(·) satisfies

v′′ = λv, subject to v(0) = 0 = v(1).

Show that λ ≤ 0, via the argument:

Starting with v′′ = λv, multiply through by v and integrate:

v′′v = λvv ⇒

∫ 1

0
v′′(x)v(x) dx = λ

∫ 1

0
v(x)v(x) dx

⇒

λ =

∫ 1
0 v′′v dx∫ 1
0 vv dx

=
v′(x)v(x)

∣∣∣∣1
0
−

∫ 1
0 v′(x)v′(x) dx

‖v‖22

= −

∫ 1
0 v′(x)v′(x) dx

‖v‖22
= −

‖v′‖22
‖v‖22

≤ 0 .
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(The ratio in the expression for λ is called a Rayleigh quotient.) By this result, can write
λ = −ω2 for 0 ≤ ω < ∞. So, our problem in v becomes

v′′ + ω2v = 0, subject to v(0) = 0 = v(1), (14)

which (prior to applying the BCs) has solution

v(x) = a cos(ωx) + b sin(ωx) .

The BC v(0) = 0 implies a = 0.
The BC v(1) = 0 implies ω = nπ, n = 1, 2, . . ..
Thus, the only instances in which (14) has a nontrivial solution are those in which

ω = ωn = nπ, n = 1, 2, . . . , in which case v = vn(x) = sin(nπx) .

Therefore, our heat problem has infinitely many separable solutions

un(t, x) = e−n2π2t sin(nπx), n = 1, 2, . . . .

The general solution (still not having applied the IC) is

u(t, x) =

∞∑
n=1

cnun(t, x) =

∞∑
n=1

cne−n2π2t sin(nπx) .

As is the case with IVPs for ODEs, the IC should allow us to determine a unique solution—that
is, find correct values for the cn. We have

f (x) = u(0, x) =

∞∑
n=1

cn sin(nπx) .

It turns out (see HW) that, in the inner product of L2(0, 1), 〈sin(mπ·), sin(nπ·)〉 = 0 whenever
m , n. Employing this orthogonality, we take the inner product with sin(kπ·):

〈
f , sin(kπ·)

〉
=

〈 ∞∑
n=1

cn sin(nπ·), sin(kπ·)
〉

= · · · = ck‖ sin(kπ·)‖22 ,

and thus

ck =

〈
f , sin(kπ·)

〉
‖ sin(kπ·)‖22

= 2
〈

f , sin(kπ·)
〉

(see HW) .

So, we get solution

u(t, x) =

∞∑
n=1

2
〈

f , sin(nπ·)
〉

e−n2π2t sin(nπx) .

Some remarks:
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• Overview of what we did:

– We viewed the PDE as ∂u/∂t = A[u], where A is a spatial differential operator.

– We assumed separable solutions of form eλtv(x) (more general form would be p(t)q(x)).

– Separability led to a BVP

A[v] = λv, subject to BCs,

one which had (countably) infinitely-many eigenvalues, all real and non-positive.

– We superimposed these solutions of the PDE/BCs

u(t, x) =

∞∑
n=1

cnun(t, x) , (15)

where the un(t, x) are the separable solutions arising from the BVP above. Impicitly,
we assumed that the un(t, x) are sufficiently rich (in the sense of forming a basis for all
solutions of the BVP) that we may consider (15) to be the general solution of the heat
problem (modulo IC).

– We used orthogonality of the eigenfunctions to obtain appropriate coefficients cn in (15)
to satisfy the IC.

• Along with a change in the operator, changes to the BCs and/or (spatial) domain on which
the problem is stated have an effect on the eigenpairs. For example, if the above problem is
stated for 0 < x < `, then the eigenpairs are

λn = −
n2π2

`2 , vn(x) = sin
(nπx
`

)
, n = 1, 2, . . . ,

with the (still mutually orthogonal) eigenfunctions having squared L2(0, `)-norm

‖vn(·)‖22 =

∥∥∥∥∥sin
(nπ·
`

)∥∥∥∥∥2

2
=

∫ `

0
sin2

(nπx
`

)
dx =

`
2
.

• We will handle the Cauchy (pure IVP) heat problem differently

• Some big questions:

1. Are the eigenfunctions going to be orthogonal routinely?

2. Is it generally true that the separable eigensolutions are rich enough to form a general
solution?

3. Is the term-by-term differentiation of this series—necessary in demonstrating it satisfies
the PDE—valid?

4. In what sense does the series (15) converge?
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Fourier Series

Let us solve another heat problem, this time with Neumann BCs.

Example 20: 1D Heat Problem with Homogeneous Neumann Conditions

Consider the Dirichlet heat problem (with γ > 0) on a bounded interval

ut = γuxx, 0 < x < `, t > 0, subject to u(0, x) = f (x), ux(t, 0) = ux(t, `) = 0.

Carry out a similar analysis. Assume separable solutions u(t, x) = eλtv(x) to arrive at the BVP

v′′ −
λ
γ

v = 0, subject to v′(0) = 0 = v′(`) .

Use the Rayleigh quotient again to show that λ ≤ 0, so can write λ/γ = −ω2, with 0 ≤ ω < ∞.
The resulting BVP

v′′ + ω2v = 0, subject to v′(0) = 0 = v′(`), (16)

has general solution (modulo the BCs)

v(x) = A cos(ωx) + B sin(ωx) ⇒ v′(x) = −Aω sin(ωx) + Bω cos(ωx)

BC v′(0) = 0 ⇒ either ω = 0 or B = 0 .

Since ω = 0 yields a nontrivial (constant) solution, λ0 = 0 is truly an eigenvalue with corre-
sponding eigenfunction v0(x) = 1 (because it satisfies the ODE and both BCs). Focusing now
on the case when ω , 0, we have

v(x) = A cos(ωx) ⇒ v′(x) = −Aω sin(ωx)

BC v′(`) = 0 ⇒ ωn =
nπ
`
, n = 0, 1, 2, . . . .

(Note: The case n = 0 is redundant.) Thus, we have eigenvalues

λn = −
γn2π2

`2 , with corresp. eigenfns vn(x) = cos
(nπx
`

)
, n = 0, 1, 2, . . . .

The corresponding separable solutions are

un(t, x) = e−γn2π2t/`2
cos

(nπx
`

)
,

which we superimpose (assuming completeness) to get general solution (modulo IC)

u(t, x) =

∞∑
n=0

cnun(t, x) =

∞∑
n=0

cne−γn2π2t/`2
cos

(nπx
`

)
.
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As in the previous example, the eigenfns of the spatial differential operator with BCs for this
problem are mutually orthogonal in the L2(0, `)-inner product. Moreover,

∥∥∥∥∥cos
(nπ·
`

)∥∥∥∥∥2

2
=


`, if n = 0,

`
2
, if n = 1, 2, . . . .

Using this, if we define

ak :=
2
`

〈
f , cos

(
kπ·
`

)〉
=

2
`

∫ `

0
f (x) cos

(
kπx
`

)
dx , (17)

then (we assert without proper justification) these an satisfy

f (x) =
a0

2
+

∞∑
n=1

an cos
(nπx
`

)
(18)

(series converges in the L2-norm sense), and we propose the following as a solution of the
homogeneous Neumann IBVP:

u(t, x) =
a0

2
+

∞∑
n=1

ane−γn2π2t/`2
cos

(nπx
`

)
.

Remarks:

• Equations (17), (18) together are called the Fourier cosine series (FCS) of f . If these eigenfns
form a basis for L2(0, `)—and they do!—then (18) holds in [0, `] for every f ∈ L2(0, `) given
that the coefficients are the ones from (17).

• The equals sign in (18) must be understood in the L2-sense. (Olver writes ∼ in place of of =.)
That is, the series converges in norm to f , or

lim
n→∞

∥∥∥∥∥∥∥ f −
a0

2
−

n∑
k=1

ak cos
(

kπ·
`

)∥∥∥∥∥∥∥
2

= 0 .

Visually, this means (in a technical sense) something about the disappearance of space between
f and its truncated FCS as more terms are kept, quite different from pointwise convergence.

• Use the Octave program fcs approx.m to demonstrate this convergence for cosine series.
View f and its truncated series on (0, `), (−`, `), and (−2`, 2`). Conclude the FCS converges
to the even (2`)-periodic extension of f .

• Have already hinted that each f ∈ L2(0, `) has a Fourier sine series

f (x) =

∞∑
n=1

bn sin
(nπx
`

)
, with bk :=

2
`

∫ `

0
f (x) sin

(
kπx
`

)
dx .
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Again this is so because these eigenfns form a basis for L2(0, `) so long as the equals sign
is understood in the sense of L2 convergence on (0, `). The series may be more broadly
understood as converging (in L2-sense) to the odd (2`)-periodic extension of f .

• In the text, Olver solves the famous “Fourier (heat equation on a 1D) ring” problem

ut = uxx, −` < x ≤ `, t > 0,

subject to
u(t,−`) = u(t, `), ux(t,−`) = ux(t, `), u(0, x) = f (x) .

(Olver does the case ` = π.) This heat problem gives rise to yet another boundary value
(eigenvalue) problem

v′′ = λv, subject to v(−`) = v(`) and v′(−`) = v′(`) .

Once again, eigenvalues λ = −ω2
≤ 0 are real and non-positive. As in the previous example

λ0 = 0 is an eigenvalue w/ corresp. eigenfn v0(x) = 1.

The other eigenvalues are λn = −n2π2/`2, n = 1, 2, . . ., this time having two corresponding
independent eigenfns

cos
(nπx
`

)
and sin

(nπx
`

)
.

Result 6. The functions 1, cos(πx/`), sin(πx/`), cos(2πx/`), sin(2πx/`), cos(3πx/`), sin(3πx/`),
. . . are an orthogonal basis for L2(−`, `) and have corresponding squared norms

‖1‖22 = 2` ,
∥∥∥∥∥cos

(nπx
`

)∥∥∥∥∥2

2
= ` , and

∥∥∥∥∥sin
(nπx
`

)∥∥∥∥∥2

2
= ` .

Because of this result, each f ∈ L2(−`, `) has a classical Fourier series expansion

f (x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx
`

)
+ bn sin

(nπx
`

)]
, (19)

where the coefficients are given by

an :=
1
`

∫ `

−`
f (x) cos

(nπx
`

)
dx and bn :=

1
`

∫ `

−`
f (x) sin

(nπx
`

)
dx . (20)

Once again, the equality (19) is to be understood, in general, as holding in the L2-sense. The
series, in fact, converges (in this sense) to the (2`)-periodic extension of f .

The corresponding solution to the Fourier ring problem is

u(t, x) =
a0

2
+

∞∑
n=1

e−n2π2t/`2
[
an cos

(nπx
`

)
+ bn sin

(nπx
`

)]
,

where the an, bn are given by (20).
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Demonstrate for various f defined on [0, `] the

• odd (2`)-periodic extension

• even (2`)-periodic extension

and for various f ∈ L2(−`, `) the (2`)-periodic extension, labeled f̃ in the text.

Show convergence of

• Fourier sine/cosine series (use fss approx.m, fcs approx.m), and

• classical Fourier series (use cfs approx.m).

(Note: All three of these routines make calls to fourierCoeff.m.) Specifically, run commands like

> function y = f(x)

> y = 4 - (x - .5).ˆ2;

> end

> plot(xs, f(xs), xs, fss_approx(@f, xs, k, 2)), axis([-4 4 -4 4]), pause, end

Convergence of classical Fourier series

Definitions:

• A function f is said to be piecewise continuous on a bounded interval [a, b] if it is continuous
throughout [a, b] except possibly at finitely many points x j, j = 1, . . . ,N, and at each of these
points the right and left-hand limits (as appropriate)

f (x−j ) := lim
x→x−j

f (x) and f (x+
j ) := lim

x→x+
j

f (x)

exist and are finite. Said another way, f cannot have infinite discontinuities, and only finitely
many discontinuities of the other 2 types.

Display some examples and nonexamples.

• A function f is said to be piecewise C1 (piecewise Cn) on a bounded interval [a, b] if both f
and f ′ ( f , f ′, f ′′, . . . , f (n)) are piecewise continuous on [a, b].

So, at every point (including discontinuities) f has well-defined left and right tangent lines
(infinite slopes are excluded).
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• A function f is piecewise continuous (piecewise C1) on R if it is piecewise continuous
(piecewise C1) on every bounded interval [a, b] within R.

Theorem 7 (Pointwise Convergence of Classical Fourier Series). If f̃ (x) is piecewise C1 and is (2`)-
periodic, then its (classical) Fourier series converges pointwise (not just in the L2-sense, though it
does that, too). For x ∈ R, the value to which the series converges is

1
2

[
f̃ (x+) + f̃ (x−)

]
,

which is simply f̃ (x) for those points x at which f̃ is continuous.

Theorem 7 speaks to the pointwise convergence of

• classical Fourier series

• for a (2`)-periodic function.

What if these criteria are not met?

• Case: f is C1 on R, but not (2`)-periodic
f has a unique (2`)-periodic extension f̃ that equals f on −` < x ≤ `. This extension is
piecewise C1 since f is. The classical FS is the same for both f and f̃ (considered as functions
in L2(−`, `)), so Theorem 7 is in play.

• Case: f is C1 on R, and we have its FSS
Take f̃ to be the odd (2`)-periodic extension of f . The key is to notice the classical FS of
f̃ (considered as a function in L2(−`, `)) and the FS series of f (considered as a function in
L2(0, `)) are identical.

Draw some example functions f and the corresponding pointwise limit of its Fourier series.

Theorem 8 (Differentiation of Classical Fourier Series). Suppose the (2`)-periodic extension of f is
piecewise C2. Then its Fourier series may be differentiated term-by-term. In particular,

f ′(x) =

∞∑
n=1

nπ
`

[
bn cos

(nπx
`

)
− an sin

(nπx
`

)]
.

Discuss the meaning of “equals” in the previous equation.
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Inner Product Spaces

Definition 9. An inner product space is a vector space V equipped with an inner product 〈·, ·〉.
What makes it an inner product is not the symbol used, but rather the properties it has—namely,
it must be the case that

(i) 〈u,v〉 is a scalar1 for all u, v ∈ V.

(ii) 〈v,v〉 ≥ 0 for all v ∈ V, with equality if and only if v = 0.

(iii) 〈u,v〉 = 〈v,u〉 for all u, v ∈ V. (Complex conjugation is unnecessary whenV is a real vector
space.)

(iv) 〈au,v〉 = a 〈u,v〉 for all u, v ∈ V and all scalars a.

(v) 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉 for all u, v, w ∈ V.

Such aV has a ready-made norm ‖ · ‖ =
√
〈·, ·〉, turning it into a normed vector space.

Remarks:

• The Euclidean spacesRn, Cn are inner product spaces when equipped with their usual inner
products:

〈u,v〉 =

n∑
j=1

u jv j in Rn, 〈u,v〉 =

n∑
j=1

u jv j in Cn.

Indeed, the Euclidean spaces were the models for the theory of inner product space.

• Olver speaks of Hilbert space, calling L2(a, b) one. All Hilbert spaces are a priori inner product
spaces. They have the additional property of completeness (Cauchy sequences converge to a
value inside the space).

In any inner product space, we have the following familiar theorem:

Theorem 10 (Pythagorean Theorem). Suppose V is an normed inner product space (using the
induced norm). If u, v ∈ V are orthogonal, then ‖u + v‖2 = ‖u‖2 + ‖v‖2.

1The word scalar, here, refers to a complex number. The exception is when our vector space is real, in which case a
scalar must be a real number.
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Proof. We have
‖u + v‖2 = 〈u + v,u + v〉 = · · · = ‖u‖2 + ‖v‖2 .

�

Projections (somewhat different than handled in class)

In homework (Problem ?11) we saw that a typical term in a Fourier series for f —

bn sin
(nπx
`

)
=

〈
f , sin

(nπ·
`

)〉
∥∥∥∥∥sin

(nπ·
`

)∥∥∥∥∥2

2

sin
(nπx
`

)
= projg f ,

—is just the projection of f onto the function g(·) = sin(nπ · /`). In a normed vector space V, a
projection projuw of one vector onto another is simply the vector in the subspace ofV spanned by
u that is closest to w; in symbols,

‖w − projuw‖ ≤ ‖w − cu‖ (21)

for all scalars c. When our norm arises from an inner product (i.e., ‖w‖ =
√
〈w,w〉), we have this

formula for the projection

projuw =
〈w,u〉
‖u‖2

u ,

and so equality in (21) when c = 〈w,u〉 /‖u‖2.

Things get a little harder when we wish to find the projec-
tion of a vector onto a subspace whose dimension is greater
than 1. Let {u1,u2, . . . ,un} be a basis for an n-dimensional
subspace S of V. Analogous to our understanding of the
projection of w onto another vector u, we think of proj

S
w as

the vector in S closest to w, or

0

w

proj
S

w

S

‖w − proj
S

w‖ ≤ ‖w − v‖ , for all vectors v ∈ S .

Since each v ∈ S is a linear combination of the basis vectors of S, we may write

∥∥∥w − proj
S

w
∥∥∥ ≤

∥∥∥∥∥∥∥∥w −
n∑

j=1

d ju j

∥∥∥∥∥∥∥∥ , for all choices of scalars d1, . . . , dn .

We infer from Problem ?11 that simply adding the projections of w onto the individual basis
vectors

proju1
w + proju2

w + · · · + projun
w

does not, in general, yield proj
S

w. Nevertheless, the same problem might make us guess this
result:
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Result 11. Suppose {u1, . . . ,un} is an orthogonal basis ofS, a subspace of an inner product (normed)
vector spaceV. Then

proj
S

w = proju1
w + proju2

w + · · · + projun
w

Proof. (real vector space case.) What we must prove is really that
∥∥∥∥w −

∑n
j=1 proju j

w
∥∥∥∥ ≤ ∥∥∥∥w −

∑n
j=1 d ju j

∥∥∥∥
or, equivalently∥∥∥∥∥∥∥∥w −

n∑
j=1

proju j
w

∥∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥∥w −
n∑

j=1

d ju j

∥∥∥∥∥∥∥∥
2

, for all choices of scalars d1, . . . , dn .

Throughout the proof we will take c j :=
〈
w,u j

〉
/‖u j‖

2, which is the scalar multiple of u j which
gives proju j

w. (So, proju j
w = c ju j.) Starting with the right-hand side, we have

‖w −
∑

j

d ju j‖
2 =

〈
w −

∑
j

d ju j,w −
∑

k

dkuk

〉
= · · ·

= ‖w‖2 − 2
∑

j

d j

〈
w,u j

〉
+

∑
j

d2
j ‖u j‖

2

= ‖w‖2 − 2
∑

j

d jc j‖u j‖
2 +

∑
j

d2
j ‖u j‖

2

= ‖w‖2 − 2
∑

j

d jc j‖u j‖
2 +

∑
j

d2
j ‖u j‖

2 +
∑

j

c2
j ‖u j‖

2
−

∑
j

c2
j ‖u j‖

2

= ‖w‖2 −
∑

j

c2
j ‖u j‖

2 +
∑

j

(d2
j − 2d jc j + c2

j )‖u j‖
2

= ‖w‖2 −
∑

j

c2
j ‖u j‖

2 +
∑

j

(d2
j − c j)2

‖u j‖
2

≥ ‖w‖2 −
∑

j

c2
j ‖u j‖

2

To finish, we note first that
(
w −

∑
j c ju j

)
and

(∑
j c ju j

)
are orthogonal:〈

w −
∑

k

ckuk,
∑

j

c ju j

〉
=

∑
j

c j

〈
w,u j

〉
−

∑
k

∑
j

ckc j

〈
uk,u j

〉
=

∑
j

c2
j ‖u j‖

2
−

∑
j

c2
j ‖u j‖

2 = 0 .

Hence, by repeated applications of the Pythagorean Theorem,∥∥∥∥∥∥∥∥w −
∑

j

c ju j

∥∥∥∥∥∥∥∥
2

= ‖w‖2 −

∥∥∥∥∥∥∥∥
∑

j

c ju j

∥∥∥∥∥∥∥∥
2

= ‖w‖2 −
∑

j

c2
j ‖u j‖

2 .

�
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Fourier series is fundamentally founded on having orthogonal bases, and so the above result
applies. In particular, the collection {1, cos(πx/`), sin(πx/`), cos(2πx/`), sin(2πx/`), . . .} is an or-
thogonal basis for L2(−`, `). If we take any N of these, denoting them as v j(x) = sin( jπx/`),
j = 1, . . . ,N, and let S be the subspace spanned by them, then for f ∈ L2(−`, `),

proj
S

f =

N∑
j=1

proj v j
f =

N∑
j=1

〈
f , v j

〉
‖v j‖

2
2

v j .

Complex Fourier Series

Now let us return to the Fourier ring problem

ut = uxx, −` < x ≤ `, t > 0,

subject to
u(t,−`) = u(t, `), ux(t,−`) = ux(t, `), u(0, x) = f (x) .

In solving this problem, the assumption of separability led us to the eigenvalue problem

v′′ + λv = 0, subject to v(−`) = v(`) and v′(−`) = v′(`) ,

where λ = −ω2 with ω ≥ 0. We found the values ωn = nπ/`, n = 0, 1, 2, . . . were those for which
nontrivial (eigenfns) solutions exist. For the negative eigenvalues λn = −n2π2/`2 there were two
independent eigenfns, which we took to be

cos
(nπx
`

)
and sin

(nπx
`

)
.

Now we propose to use a different pair of functions as a basis for the eigenspace associated with
λn:

wn(x) = eiωnx = einπx/` and w−n(x) = e−iωnx = e−inπx/` .

Claim 12. For n > 0, wn(·) and w−n(·) are orthogonal (under the inner product of L2(−`, `)).

The (alternate) solution of the Fourier ring problem is

u(t, x) =

∞∑
n=−∞

cne−n2π2t/`2
wn(x) , with cn =

〈
f ,wn(·)

〉
‖wn(·)‖22

.

The coefficients cn are obtained by applying the IC

f (x) = u(0, x) =

∞∑
n=−∞

cnwn(x) . (22)
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The collection {wn}
∞
n=−∞ is a complete orthogonal basis for L2(−`, `), so (22) holds in the mean-square

sense, and is called the complex exponential Fourier series of f . By the projection results above, if
Sn is the eigenspace associated with eigenvalue λn, then for n > 0 we have

c−nw−n(x) + cnwn(x) = projSn
f = an cos

(nπx
`

)
+ bn sin

(nπx
`

)
.

Using this, we may establish the following relationships between coefficients of the complex
exponential FS and those of the classical FS.

Claim 13. For each n = 0, 1, 2, . . .,

an = cn + c−n,

bn = i(cn − c−n),

cn = 1
2 (an − ibn) ,

c−n = 1
2 (an + ibn) ,

n = 0, 1, 2, . . . .

Orthogonality of Eigenfunctions

We have seen now several instances in which the assumption of separability u(t, x) = q(t)v(x) has
led to an eigenvalue problem, one in which

• the eigenvalues are all real (perhaps all even of the same sign), and

• the resulting eigenfunctions are orthogonal.

Q: Why does this happen?

Self-Adjoint Operators

While the setting is simpler, we have the following experience with symmetric matrices (linear
operators on Rn):

Result 14. Suppose A is an n-by-n matrix. If A is symmetric, then

• its eigenvalues are all real, and

• there exists an orthogonal basis of Rn consisting of eigenvectors of A.

Q: Is there a concept that generalizes the notion of symmetry (for matrices) to linear operators in
an inner product space?
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A: Yes, self-adjointness.

Definition 15. Let L be a linear (differential) operator defined on some (dense) subset of L2(a, b).
A pairing of L with BCs is said to be self-adjoint precisely when〈

L[φ], ψ
〉

=
〈
φ,L[ψ]

〉
for all φ,ψ ∈ dom(L) satisfying the BCs.

Example 21:

Let L[v] = v′′, with homogeneous Dirichlet BCs: v(a) = 0 = v(b). Then L is self-adjoint in
L2(a, b). (See homework.)

Example 22:

Let Ω ⊂ Rn (n = 2 or 3) be bounded with boundary sufficiently smooth to support Green’s
(n = 2 case) or the Divergence (n = 3 case) Theorem. Take L[v] = ∆v, with homogeneous
Dirichlet BCs: v(x) = 0 for x ∈ ∂Ω. Then〈

L[φ], ψ
〉

=

∫
Ω

∆φ(x)ψ(x) dx =

∫
∂Ω

(∇φ ·n)(x)ψ(x) dσ −
∫

Ω

∇φ(x) ·∇ψ(x) dx

= −

∫
Ω

∇φ(x) ·∇ψ(x) dx =

∫
∂Ω
φ(x) (∇φ ·n)(x) dσ −

∫
Ω

∇φ(x) ·∇ψ(x) dx

=

∫
Ω

φ(x) ∆ψ(x) dx =
〈
φ,L[ψ]

〉
,

showing L with homogeneous Dirichlet BCs is self-adjoint.

Note that on conclusion the proof gives us is that〈
∆φ,ψ

〉
= −

〈
∇φ,∇ψ

〉
,

where the right-hand side is an appropriate definition for an inner product between vector func-
tions in Ω. Taking ψ to be φ, and φ to be an eigenfn associated with eigenvalue λ, this immediately
implies

λ‖φ‖22 =
〈
∆φ,φ

〉
= −

〈
∇φ,∇φ

〉
= ‖∇φ‖22,

showing that eigenvalues of the Laplacian operator are non-positive (i.e., ∆ is negative semi-
definite).

Self-adjoint operators are truly an analog of symmetric matrices, as seen in the next result.
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Result 16. Let L be a self-adjoint linear operator. Then

(i) all eigenvalues of L are real, and

(ii) eigenvectors (eigenfns) corresponding to distinct eigenvalues are orthogonal.

Proof. To prove (i), let (λ, v) be an eigenpair of L. Then

λ‖v‖2 = λ 〈v, v〉 = 〈λv, v〉 = 〈L[v], v〉 = 〈v,L[v]〉 = 〈v, λv〉 = λ 〈v, v〉 = λ‖v‖2 .

Since v is an eigenvector, ‖v‖ , 0 and we may divide through to get λ = λ, showing that λ ∈ R.

Now let λ, µ ∈ R be eigenvalues of L with corresponding eigenvectors u, v, respectively, and
assume λ , µ. Then

(λ − µ) 〈u, v〉 = λ 〈u, v〉 − µ 〈u, v〉 = 〈λu, v〉 −
〈
u, µv

〉
= 〈L[u], v〉 − 〈u,L[v]〉 = 0 .

Since λ , µ, it must be 〈u, v〉 = 0, proving (ii). �

The previous result does not establish that a complete orthogonal basis of eigenfns of a self-adjoint
operator exists. This is true, however, at least for the Laplacian, by Rellich’s Theorem.

Theorem 17 (Rellich’s Principle). Let Ω ⊂ Rn be bounded. Then eigenfunctions of the Laplacian
operator with homogeneous Dirichlet boundary conditions form a complete orthogonal basis of
L2(Ω).

Theorem 18 (Rellich-Weyl Principle). All diffusion problems

ut = ∆u

subject to homogeneous Dirichlet BCs on a bounded domain Ω are uniquely solvable for any given
square-integrable initial shape f by orthogonal separation of variables.

Example 23: Sturm-Liouville Eigenvalue Problems (SLEPs)

Many of the eigenvalue problems that come up as a result of separation of variables are
classified as Sturm-Liouville eigenvalue problems, or SLEPs. For given real-valued functions
p, q defined on the interval [a, b] with p differentiable, consider the operator

K[v] := −
d
dx

[
p(x)

dv
dx

]
+ q(x)v = −p(x)

d2v
dx2 − p′(x)

dv
dx

+ q(x)v . (23)
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The eigenvalue problem for K is

K[v] = λv, subject to BCs:

 α1v(a) + α2v′(a) = 0,
β1v(b) + β2v′(b) = 0,

(24)

where |α1| + |α2| > 0 and |β1| + |β2| > 0. Assuming everything is real-valued here, then for
sufficiently smooth functions u, v satisfying the boundary conditions we have

〈K[u], v〉 = −

∫ b

a
v(x)

d
dx

(
p(x)

du
dx

)
dx +

∫ b

a
q(x)u(x)v(x) dx

= −p(x)u′(x)v(x)
∣∣∣∣b
a

+

∫ b

a

du
dx

(
p(x)

dv
dx

)
dx +

∫ b

a
q(x)u(x)v(x) dx

=
[
− p(x)u′(x)v(x)

]b

a
+

[
p(x)u(x)v′(x)

]b

a
+

∫ b

a

[
−

d
dx

(
p(x)

dv
dx

)
+ q(x)v(x)

]
u(x) dx

=
[
− p(x)u′(x)v(x)

]b

a
+

[
p(x)u(x)v′(x)

]b

a
+ 〈u,K[v]〉 .

For K to be self-adjoint, we need these boundary terms to vanish. In the case that each α j, β j

is nonzero ( j = 1, 2), we have[
− p(x)u′(x)v(x)

]b

a
+

[
p(x)u(x)v′(x)

]b

a

= p(a)u′(a)v(a) − p(b)u′(b)v(b) + p(b)u(b)v′(b) − p(a)u(a)v′(a)

=
p(a)
α1α2

[α2u′(a)α1v(a) − α1u(a)α2v′(a)] +
p(b)
β1β2

[β1u(b) β2v′(b) − β2u′(b) β1v(b)]

=
p(a)
α1α2

[α2u′(a)α1v(a) − α2u′(a)α1v(a)] +
p(b)
β1β2

[β1u(b) β2v′(b) − β1u(b) β2v′(b)]

= 0 ,

giving that K is self-adjoint. Thus, the eigenvalues of K are real, and eigenfns associated with
distinct eigenvalues are orthogonal.

If p, p′ and q are continuous on [a, b] with p non-vanishing in this interval, then the SLEP (24) is said
to be regular. (Otherwise, the SLEP is said to be singular, a condition that often occurs because p
is zero at an endpoint of the interval.) For regular SLEPs the following theorem reveals even more
about the eigenpairs.

Theorem 19. Assume the operator (23) is regular on the interval [a, b]. Then the SLEP (24)

(i) has infinitely many eigenvaluesλn, n = 1, 2, 3, . . ., (all of which are real, by the self-adjointness
demonstrated in the last example) satisfying limn→∞ |λn| = +∞, and
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(ii) there exists a complete orthogonal system {vn(·)}∞n=1 (basis) in L2(a, b) consisting of eigenfns
of K. That is, every f ∈ L2(a, b) can be expanded in a generalized Fourier series as

f (x) =

∞∑
n=1

cnvn(x) , with cn =

〈
f , vn(·)

〉
‖vn‖2

,

where the series on the right-hand side converges to f in (at least) the mean-square sense. In
fact, the series converges pointwise on (a, b) to averages of left and right-hand limits of f
when f ∈ C1.

Separation of Variables: Part II

The general idea:

Assume the solution of the PDE may be written as a product of functions which isolate
the influence of the independent variables.

Example 24: Heat Problem with Mixed BCs

Solve the diffusion problem

ut = kuxx, 0 < x < 1, t > 0, subject to IC: u(0, x) = f (x), and BCs:

 u(t, 0) = 0,
u(t, 1) + ux(t, 1) = 0.

Solution: Assume u(t, x) = q(t)ϕ(x) to get

q′

kq
=
ϕ′′

ϕ
= λ,

yielding the two ODEs:

q′ = λkq, and ϕ′′ − λϕ = 0.

Solving the former ODE (in t) gives q(t) = q0 exp(kλt). The latter ODE is subject to the
conditions

ϕ(0) = 0 and ϕ(1) + ϕ′(1) = 0.

To determine the sign of λ, we note that if λ, ϕ are an eigenpair, then

λ‖ϕ‖22 =

∫ 1

0
(ϕ′′)ϕ dx = ϕ′(x)ϕ(x)

∣∣∣∣1
0
−

∫ 1

0
(ϕ′)2 dx

= ϕ′(1)ϕ(1) − ‖ϕ′‖22 = −ϕ2(1) − ‖ϕ′‖22 (since ϕ(1) = −ϕ′(1)).
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Thus, λ = −[ϕ2(1) + ‖ϕ′‖2]/‖ϕ‖2 ≤ 0. We note that 0 is not an eigenvalue since, in that case, the
general solution for the ODE in x would be ϕ(x) = ax + b. But, the BC at x = 0 implies b = 0
and the BC at ϕ = 1 implies 2a = 0, so there are no nontrivial solutions. Thus, taking λ = −ω2,
with ω > 0, the general solution of the ODE in x is

ϕ(x) = a cos(ωx) + b sin(ωx).

The condition ϕ(0) = 0 implies a = 0, so ϕ(x) = sin(ωx). The right-end condition implies

ω cosω + sinω = 0, or tanω = −ω,

an equation that has infinitely many solutions ωn ∼ (2n − 1)π/2 as n → ∞. Thus, we have
eigenvalues λn = −ω2

n, with corresponding eigenfunctions ϕn(x) = sin(ωnx), n = 1, 2, . . . .
Note: The script tanxPlusxZeros.m, which works in Octave, accepts an integer m input and
approximates the first m positive solutions of this equation (the negative solutions are just
additive inverses of the positive ones).

Returning to the ODE in t, we see there is a solution qn(t) = exp(−kω2
nt) for each n = 1, 2, . . . to

go with each φn, so we get the series solution

u(x, t) =

∞∑
n=1

cne−kω2
nt sin(ωnx), where cn =

〈
f , sin(ωn·)

〉
‖ sin(ωn·)‖2

.

Octave code for the case k = 1, f (x) = 10x(1 − x), keeping 20 terms of series solution (grab
tanxPlusxZeros.m and prob1Approx.m):

octave:1> function y = f(x)

> y = 10*x.*(1-x);

> end

octave:2> xs = [0:.01:1]’;

octave:3> for t = 0:.05:.3, plot(xs, prob1Approx(@f, xs, 20, ts, 1)), axis([0 1 0 2.5]), pause, end

Example 25: Solid Ball Dropped in Bath

Suppose a solid ball of radius a is dropped into a bath held at a fixed temperature. We wish to
solve for the temperature of the ball as it changes in time. Such a problem, in general, relies on
4 independent variables (time and 3 spatial dimensions). We make, however, the simplifying
assumption that the initial temperature profile is radially symmetric, and hence assume the
solution remains radially symmetric for all t > 0, relying only on time and distance ρ from the
ball’s center. The Laplacian in spherical coordinates is

∆ =
1
ρ2

∂
∂ρ

(
ρ2 ∂
∂ρ

)
+

1
ρ2 sinθ

∂
∂θ

(
sinθ

∂
∂θ

)
+

1
ρ2 sin2 θ

∂2

∂ϕ2 .
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But because of radial symmetry, we have the model problem

ut = ∆u =
∂2u
∂ρ2 +

2
ρ
∂u
∂ρ
, 0 ≤ ρ < a, t > 0,

u(t, a) = 0, t > 0,
u(0, ρ) = f (ρ), t > 0.

Solution: Assume u(ρ, t) = v(ρ)q(t). Then our PDE becomes

vq′ = v′′q +
2
ρ

v′q, or
q′

q
=

v′′ + 2ρ−1v′

v
= λ.

Thus, we have two ODEs:

q′ = λq and v′′ +
2
ρ

v′ − λv = 0.

By the BC u(t, a) = 0, we get v(a) = 0. Also, since we do not expect temperatures u(t, ρ) to
grow with time (in particular, to become unbounded), we impose the condition that u(t, 0) is
bounded, which becomes v(0) stays bounded. Now set w(ρ) = ρv(ρ). With this substitution,

v′′ +
2
ρ

v′ − λv = 0 becomes w′′ − λw = 0,

subject to the conditions w(a) = 0 and w(ρ)/ρ stays bounded as ρ → 0. This latter condition
implies w(0) = 0. Thus, for an eigenpair λ, w we have

λ‖w‖2 = w(ρ)w′(ρ)
∣∣∣∣a
0
−

∫ a

0
(w′)2 dρ = −‖w′‖2,

giving that eigenvalues λ ≤ 0. The BCs further imply that λ < 0, so we may write λ = −β2 for
real β > 0. The usual arguments now lead to eigenvalues λn = −(nπ/a)2 with corresponding
eigenvectors wn(ρ) = sin(nπρ/a), n = 1, 2, . . ., or rather vn(ρ) = sin(nπρ/a)/ρ, n = 1, 2, . . ..

After solving the corresponding ODE in t, we have the series solution

u(ρ, t) =

∞∑
n=1

cne−(nπ/a)2t sin(nπρ/a)
ρ

.

We know we need to choose the cn to satisfy

f (ρ) =

∞∑
n=1

cn
sin(nπρ/a)

ρ
, which means ρ f (ρ) =

∞∑
n=1

cn sin(nπρ/a).

Thus, we may choose the cn as the usual sine coefficients for ρ f (ρ):

cn =
2
a

∫ a

0
ρ f (ρ) sin(nπρ/a) dρ.

For f (ρ) ≡ 1 and radius a = 1, we may view the truncated series solution keeping 20 terms at
time t = 0.5 using the commands
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octave:1> function y = f(rho)

> y = rho;

> end

octave:2> rhos = [0:.01:1]’;

octave:3> plot(rhos, prob2Approx(’f’, rhos, 0.5, 20, 1))

Example 26: One-Dimensional Wave Equation on Bounded Interval

Consider the transverse vibrations of a string secured at its ends having known initial dis-
placement and velocity—that is,

utt = c2uxx, 0 < x < `, t > 0, with BCs u(t, 0) = 0 = u(t, `),

subject to initial conditions

u(0, x) = f (x) and ut(0, x) = g(x) .

Solution: Assuming separation u(t, x) = q(t)ϕ(x) leads to

u(t, x) =

∞∑
n=1

[
an cos

(nπct
`

)
+ bn sin

(nπct
`

)]
sin

(nπx
`

)
.

Now use the ICs to get expressions for the an, bn.

Demonstrate (truncated) solution when

f (x) =

 x, 0 < x < 1/2,
1 − x, 1/2 ≤ x ≤ 1,

g(x) = 0 ,

using code from dirichletWaveProb.m.

Example 27: Laplace’s Equation in a Rectangular Domain

Consider the problem

∆u = 0, 0 < x < a, 0 < y < b, subj. to u(x, 0) = f (x), u(x, b) = 0, u(0, y) = 0, u(a, y) = 0.
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Maximum Principles

Definition 20. Suppose Ω is an open, connected subset ofRn. A real-valued function u : Ω→ R is
said to be harmonic if it satisfies ∆u = 0 in Ω.

Harmonic functions have a remarkable property.

Result 21 (Mean Value Principle). Suppose Ω ⊂ Rn is open and connected, and that u is harmonic
in Ω and piecewise continuous on ∂Ω. Then for each x0 ∈ Ω and for each ball B centered at x0 of
radius r > 0 such that B ⊂ Ω, the value u(x0) is the average of values on ∂B (and in B):

u(x0) =

∫
∂B

u dσ∫
∂B

dσ
=

∫
B

u dx∫
B

dx
.

Proof. [Sketch.] Let a(r) be the average value of u on the sphere S = ∂B centered at x0:

a(r) :=

∫
S u dσ∫
S dσ

. Then a′(r) = · · · =

∫
B ∆u dx∫

S dσ
= 0 ,

and so a(r) = C (a constant). By continuity,

u(x0) = lim
r→0

a(r) = C = a(r)

for any r > 0. �

The next result, a corollary to the mean value principle, indicates that one expects to find maximum
and minimum values for harmonic functions on the boundary of the region Ω.

Theorem 22 (Maximum Principle). An harmonic function on Ω (open, connected in Rn) cannot
attain a maximum (nor a minimum) in Ω unless it is constant.

Proof. [Idea.] Suppose u attains a maximum value M at x0 ∈ Ω. Set v(x) = M − u(x). Note that
∆v = −∆u = 0, so v is harmonic in Ω, and v(x) ≥ 0 for all x ∈ Ω. Let r > 0 be such that the ball B of
radius r centered at x0 lies entirely inside Ω. Then

0 = v(x0) =

∫
B v dx∫
B dx

,
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showing that v(x) = 0 throughout B (and, hence, u(x) ≡M for x ∈ B). �

The maximum principle may be used to deduce uniqueness of solutions to Poisson’s equation.

Example 28: Uniqueness of Solution for Poisson’s Equation with Dirichlet BCs

Suppose Ω is an open, bounded, connected region of Rn. Consider the Poisson problem with
Dirichlet boundary conditions

∆u = f , x ∈ Ω, subject to u(x) = g(x) for x ∈ ∂Ω.

Suppose u, v both solve this problem, and let w := u − v. Then,

∆w = ∆u − ∆v = f − f = 0 ,

showing that w is harmonic in Ω. By the maximum principle,

min
Ω

w = min
∂Ω

w = 0 = max
∂Ω

w = max
Ω

w .

Said another way, u ≡ v in Ω.

Notes:

• It is also possible to show that any solution of Poisson’s equation subject to mixed inho-
mogeneous (Dirichlet on part, Neumann on the rest) BCs is unique. Solutions to Poisson’s
equation subject to Neumann BCs are only unique up to an additive constant.

• Proving existence of a solution to Poisson’s equation is more difficult. A sufficient condition
(see the 1st paragraph of [Olver], p. 217) is that f ∈ C1(Ω).

There is a version of the maximum principle for the diffusion equation—the evolutionary equation
for which Poisson’s equation represents the equilibrium problem.

Theorem 23 (Maximum Principle for Diffusion Equations). Consider the forced heat equation

ut = γuxx + F(t, x), a < x < b, t > 0

(γ > 0 constant). Assume the source term is nowhere positive F(t, x) ≤ 0 for all (t, x) ∈ R =

[a, b]× [0, c]. Then the global maximum (and minimum) of u(t, x) on the domain R occurs either at
t = 0 or x = a or x = b.

As a corollary to this result, we have the following:
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Corollary 24. Suppose u(t, x) solves the heat equation (with γ > 0)

ut = γuxx, a ≤ x ≤ b, 0 ≤ t ≤ c.

Let m and M be, respectively, the minimum and maximum values for the initial and boundary
temperatures—that is,

m ≤ u(t, x) ≤ M for (t, x) ∈
{
(0, x)

∣∣∣ a ≤ x ≤ b
}
∪

{
(t, a)

∣∣∣ 0 ≤ t ≤ c
}
∪

{
(t, b)

∣∣∣ 0 ≤ t ≤ c
}
.

Then m ≤ u(t, x) ≤M for all (t, x) in the rectangle [a, b] × [0, c].

Well-Posed Problems

Definition 25 (Jacques Hadamard, paper of 1923). An initial/boundary value problem is said to
be well-posed if it meets these criteria:

• a solution of the problem exists,

• there is no more than one solution, and

• the solution depends continuously on the initial and/or boundary data (a condition also
known as stability). That is, a small change in initial/boundary data should yield a small
change in solution.

Example 29: Cauchy Problem for Laplace’s Equation is Unstable

Consider the problem

∆u = 0, (x, y) ∈ R × (0,∞), subject to u(x, 0) = f (x), uy(x, 0) = g(x).

Notice that u0(x, y) ≡ 0 satisfies this problem when f (x) = g(x) = 0. Consider the related
problems in which

f (x) = fn(x) =
1
n

cos(nx), g(x) = gn(x) ≡ 0 ,

which produce solutions un(x, y) = 1
n cos(nx) cosh(ny). The larger n, the closer our BCs are to

the homogeneous ones. Nevertheless, for any fixed n,

un(0, y) =
cosh(ny)

n
→ ∞ as y→∞.
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It is left to homework to show that Poisson’s equation is stable on a bounded domain Ω.

Example 30: Backwards Heat Problem

Consider the heat problem

ut = uxx, 0 < x < π, 0 < t < 1, subject to homog. Dirichlet BCs: u(t, 0) = 0 = u(t, π).

Suppose, also, that while we presume w(x) := u(0, x) ∈ L2(0, π), we have the temperature
profile at t = 1: u(1, x) = f (x).

Note: Up to the application of a temporal snapshot of the temperature profile (previously
assumed to be available at t = 0), previous work separating variables is relevant:

u(t, x) =

∞∑
n=1

cne−n2t sin(nx) .

Employing that u(1, x) = f (x), we take the L2(0, π) inner product with sin(m·) to get

〈
f , sin(m·)

〉
=

〈 ∞∑
n=1

cne−n2
sin(n·), sin(m·)

〉
= · · · = cme−m2

‖ sin(m·)‖22 ,

giving that

cn = em2
〈

f , sin(m·)
〉

‖ sin(m·)‖22
=

2
π

em2 〈
f , sin(m·)

〉
.

Claim 26. This problem is unstable.

Proof. Clearly if we take f ≡ 0, we get each cn = 0, and hence the zero soln u ≡ 0. Now fix N
and let f (x) = 1

N sin(Nx). Clearly we can make ‖ f ‖∞ (or ‖ f ‖2) as small as we like by making N
large. We have each cn = 0, n , N, so the corresponding solution of the heat problem is

u(t, x; N) =
1
N

eN2(1−t) sin(Nx) ⇒ ‖w(x)‖∞ =
1
N

eN2
.

�

The 2nd Law of Thermodynamics (Clausius) says

A transformation whose only final result is to transfer heat from a body at a given
temperature to a body at a higher temperature is impossible; i.e., the transfer is only
possible at the expense of some organizational effort.”
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Based on this, Hadamard concluded problems like the backward heat equation are not phys-
ical. Quoting Poincaré, he said “The physical world not only provides us with problems to
solve, . . . it also suggests to us the solutions” (i.e., if we can/should solve them, and how to do
so). By such edicts from an influential mathematician (Hadamard proved the prime number
theorem, which describes the asymptotic distribution of prime numbers), many shied away
from such problems.

Some other examples of ill-posed problems:

• Sideways heat equation. Imagine trying to find out the temperature on the heat shield of the
space shuttle during re-entry. A sensor on the surface would quickly burn up. Nevertheless,
the use of heat readings from a sensor embedded under the shield to recover temperatures
on the surface is an ill-posed problem.

• Gravitational intensity problem. One wishes to use readings of gravitational intensity at
the surface of the earth to discover locations of ore deposits in the earth, another ill-posed
problem.

• Seismic exploration of marine oil deposits. One generates sound waves and listens to the
echo. Using knowledge of how various materials reflect sound waves, one wishes to detect
areas of likely oil deposits.

Example 31: Uniqueness of Solution for 1D Dirichlet Heat Problem, Bounded Domain

Consider the forced heat problem

ut = γuxx + f (t, x), 0 < x < `, t > 0, subject to


Dirichlet BCs: u(t, 0) = α(t),

u(t, `) = β(t),
IC: u(0, x) = ϕ(x).

(25)

Suppose u, v are both solutions of (25), and set w = u − v. Then w satisfies the related (to (25))
problem

wt = γwxx, 0 < x < `, t > 0, subject to


Dirichlet BCs: w(t, 0) = 0,

w(t, `) = 0,
IC: w(0, x) = 0.

(26)

By Corollary 24, w ≡ 0, meaning that u = v.

An alternate argument (Don’t do! It is assigned for HW). We will show w(t, x) ≡ 0 using the
following energy argument. Define

E(t) :=
∫ `

0
w2(t, x) dx .
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Then

E′(t) =
d
dt

∫ `

0
w2(t, x) dx =

∫ `

0

∂
∂t

w2(t, x) dx = 2
∫ `

0
wwt dx

= 2γ
∫ `

0
wwxx dx = 2γwwx

∣∣∣∣x=`

x=0
− 2γ

∫ `

0
w2

x dx = −2γ
∫ `

0
w2

x dx ≤ 0 .

Thus

0 ≤
∫ `

0
w2(t, x) dx = E(t) ≤ E(0) =

∫ `

0
w2(0, x) dx =

∫ `

0
0 dx = 0

for all t > 0. Thus 0 ≡ w(t, x) = u(t, x) − v(t, x) for all (t, x).

Inhomogeneous Problems

Many problems, as initially posed, do not yield themselves to the technique of separation of variables.
Certain “tricks of the trade” must be applied first. Here is a short list of some scenarios and standard
tricks that are used.

1. Nonhomogeneous models.
Consider the problem

ut = A[u] + F(t, x) , (27)

with zero boundary/initial conditions. As for linear ODEs, it is reasonable to consider the
associated homogeneous model

ut = A[u] , (28)

again with zero BCs/ICs.

Eigenfunction expansion. This technique involves

• first finding eigenfns {vn(·)}∞n=1 associated with homogeneous problem (28)

• expanding fns of (t, x) in series with time-varying coefficients:

s(t, x) =

∞∑
n=1

sn(t)vn(x) with sn(t) =
〈s(t, ·), vn〉

‖vn‖
2
2

.

Example 32:
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Consider the heat problem

ut − γuxx = f (t, x), 0 < x < π, t > 0, subject to

 BCs: u(t, 0) = 0 = u(t, π),
ICs: u(0, x) = 0.

Handling the homogeneous version of the problem, previous work separating variables
tells us to expand in a series of eigenfns vn(x) = sin(nx) corresponding to eigenvalues
λn = −n2, n = 1, 2, . . .. Now assume

f (t, x) =

∞∑
n=1

fn(t) sin(nx) , with fn(t) =
2
π

∫ π

0
f (t, x) sin(nx) dx ,

and

u(t, x) =

∞∑
n=1

gn(t) sin(nx) ,

with the gn(·) to be determined, so that

∂
∂t

u(t, x) =

∞∑
n=1

g′n(t) sin(nx) and
∂2

∂x2 u(t, x) = −

∞∑
n=1

n2gn(t) sin(nx) .

Inserting these into the appropriate expressions of our PDE, we get

∞∑
n=1

g′n(t) sin(nx) + γ
∞∑

n=1

n2gn(t) sin(nx) =

∞∑
n=1

fn(t) sin(nx) .

Collecting coefficients of the independent eigenfns, we get a sequence of linear ODEs

g′n(t) + n2γgn(t) = fn(t) , with soln gn(t) = g(0) +

∫ t

0
fn(τ)e−n2k(t−τ) dτ ,

for n = 1, 2, . . . . Note that, since

0 = u(0, x) =

∞∑
n=1

gn(0) sin(nx) ,

we have gn(0) = 0 for each n.

2. Nonhomogeneous BCs.
Now suppose we have the unforced problem

ut = A[u], 0 < x < `, t > 0, subject to


BCs: u(t, 0) = α(t),

u(t, `) = β(t),
IC: u(0, x) = φ(x).

Let

u∗(t, x) =
x
`
β(t) +

` − x
`

α(t) = α(t) +
β(t) − α(t)

`
x (29)
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Note: In cases where α(t), β(t) are simply constants, u∗(t, x) is the equilibrium solution,
or solution of the corresponding static problem A[u] = 0 with these BCs. Set v(t, x) =

u(t, x) − u∗(t, x). Notice that

v(t, 0) = u(t, 0) − u∗(t, 0) = α(t) − α(t) = 0,
v(t, `) = u(t, `) − β(t) = 0,
v(0, x) = u(0, x) − u∗(0, x) = φ(x) −

[
x
` β(0) + `−x

` α(0)
]
.

 (30)

If, further, we assume that the operator A annihilates linear functions (i.e., that u∗ is in the
kernel of A, as is the case when A = ∂2/∂x2), then we have A[v] = A[u], which gives that

vt = ut − u∗t = A[u] − h(t, x) = A[v] − h(t, x),

where h(t, x) = ∂u∗
∂t (t, x). Thus, we have exchanged a problem with nonzero BCs for one with

a forcing term.

Based upon 1 and 2 above, the following paradigm is proposed for solving evolutionary (and may
be adapted for static) problems. Suppose A is a linear differential operator that annihilates linear
functions is x (so A[u∗] = 0, for u∗ in (29). Given the problem

ut = A[u] + f (t, x), 0 < x < `, t > 0, subject to


BCs: u(t, 0) = α(t),

u(t, `) = β(t),
IC: u(0, x) = ϕ(x),

(31)

we set v = u − u∗. Then v satisfies

vt = ut − u∗t = A[u] − u∗t = A[v] + F(t, x) ,

along with BC/ICs (30), where F(t, x) = f (t, x)−∂u∗/∂t. This problem in v we split into two problems

vt = A[v] + F(t, x), 0 < x < `, t > 0, subject to

 BCs: v(t, 0) = 0 = v(t, `),
IC: v(0, x) = 0,

(32)

and

vt = A[v], 0 < x < `, t > 0, subject to

 BCs: v(t, 0) = 0 = v(t, `),
IC: v(0, x) = φ(x) − u∗(0, x).

(33)

The sum of solutions to (32) and (33) is a function that solves (31).

Bessel Functions in Separation of Variables

Consider the vibrations of a circular membrane (drum), modeled by the equation

∂2u
∂t2 = c2∆u.
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The geometry suggests polar coordinates, or that u = u(t, r, θ). We assume the membrane is fixed
at the circular boundary, and the initial position and velocity are given:

u(t, a, θ) = 0,
u(t, r,−π) = u(t, r, π),
ut(t, r,−π) = ut(t, r, π),

and
u(0, r, θ) = f (r, θ),
ut(0, r, θ) = g(r, θ).

.

Solution: After rescaling, we may take a = 1. We first assume u(x, t) = T(t)v(r, θ). Then

utt = c2
[
1
r
∂
∂r

(rur) +
1
r2 uθθ

]
becomes T′′v = c2T

(
vrr +

1
r

vr +
1
r2 vθθ

)
,

or
T′′

c2T
=

vrr + r−1vr + r−2vθθ
v

= λ.

This leads to the two “simpler” DEs

T′′ = λc2T , (34)

vrr +
1
r

vr +
1
r2 vθθ = λv , v(1, θ) = 0, v(r, π) = v(r,−π), vθ(r, π) = vθ(r,−π). (35)

The space of functions for which we hope to obtain a complete orthogonal basis is L2(D), where
D is the disc centered at the origin of radius 1. To show eigenvalues are real and nonpositive, we
employ the inner product of that space. Specifically, if (λ, v) form an eigenpair of our 2-dimensional
Laplacian operator L, then

λ‖v‖2 = 〈λv, v〉 = 〈L[v], v〉 =

∫ 2π

0

∫ 1

0
(vrr + r−1v + r−2vθθ)v r dr dθ

=

∫ 2π

0

∫ 1

0
vrr(rv) dr dθ +

∫ 2π

0

∫ 1

0
vrv dr dθ +

∫ 1

0
r−1

∫ 2π

0
vθθv dθ dr

=

∫ 2π

0

{[
rvrv

]a

0
−

∫ 1

0
vr(rvr + v) dr +

∫ 1

0
vrv dr

}
dθ +

∫ 1

0
r−1

{[
vθv

]2π

0
−

∫ 2π

0
v2
θ dθ

}
dr

= −

∫ 2π

0
v2

r r dr dθ −
∫ 1

0

∫ 2π

0
r−1v2

θ dθ dr ≤ 0.

Moreover, if λ = 0 it is clear that vr and vθ are zero throughout D, which implies v is constant
in D. But since v is zero on the boundary r = a, it must be zero throughout D. Thus, the only
eigenvalues λ < 0. Let us write λ = −α2 for α > 0.

Now if we assume v(r, θ) = p(r)q(θ), we get

p′′q +
1
r

p′q +
1
r2 pq′′ + α2pq = 0, or

r2p′′ + rp′

p
+ α2r2 = −

q′′

q
= µ.

That is, we have simplified (35) further

q′′ = −µq, subject to periodic BCs q(−π) = q(π), q′(−π) = q′(π), (A)

r2p′′ + rp′ + α2r2p = µp, subject to p(1) = 0. (B)
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By previous work, we have that the BVP for q results in eigenvalues µm = m2, m = 0, 1, 2, . . ., with
corresponding eigenfunctions

{cos(mθ)}∞m=0 and {sin(mθ)}∞m=1 .

With these choices of µm, our ODE (A) (one for each m) is r2p′′ + rp′ + α2r2p = m2p, or

d
dr

(rp′) +

(
α2r −

m2

r

)
p = 0. (36)

Now let z = rα. Then

p′ =
d
dr

p =

(
d
dz

p
)

dz
dr

= α
dp
dz

⇒ rp′ = z
dp
dz
,

and so
d
dr

(rp′) =
d
dz

(
z

dp
dz

)
dz
dr

=

(
dp
dz

+ z
d2p
dz2

)
α.

Thus, (36) becomes(
z

d2p
dz2 +

dp
dz

)
α +

(
zα −m2αz−1

)
p = 0, or z2 d2p

dz2 + z
dp
dz

+ (z2
−m2)p = 0.

where the latter is obtained from the former via multiplying through by zα. It (the latter) is a DE
known as the mth order Bessel equation (see Chapter 5, perhaps Section 5.7, of Boyce & DiPrima).
It has non-constant coefficients, and so is not solvable via methods covered in MATH 231 (unless
instructor covers series solutions methods like those of Chapter 5, B & D). As a 2nd order ODE, it
has two independent solutions which, for m = 0, 1, 2, . . . (i.e., m a nonnegative integer), are Jm(z),
called the Bessel function of the first kind of mth order, and Ym(z), called the Bessel function of
the second kind of mth order. The general solution is, thus,

p(r) = c1Jm(z) + c2Ym(z) = c1Jm(rα) + c2Ym(rα).

These two types of functions may be plotted in Octave using commands like

xs = 0:.01:30;

plot(xs, besselj(2, xs) % Bessel fn. of 1st kind of order 2

plot(xs, bessely(0, xs) % Bessel fn. of 2nd kind of order 0

Note that the Bessel fns of second kind satisfy |Ym(z)| → ∞ as z → 0. With u(t, r, θ) = T(t)p(r)q(θ),
we see that an implicit condition we should impose is boundedness of u at the origin, which
implies boundedness of p at r = 0. We get this only by taking c2 = 0. Imposing the condition
p(1) = 0, we get

Jm(α) = 0 ,

which means α is a (positive) zero of Jm(·), of which there are countably infinitely many. Write αmn,
n = 1, 2, . . ., for these zeros. (Olver writes them as ζmn.) Then there is a problem of the form (B) for
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each µ = µm, m = 0, 1, 2, . . . and, for each fixed m (B) has infinitely many solutions pmn(r) = Jm(αmnr),
n = 1, 2, . . ..

To summarize the work thus far, problem (35) has a doubly-infinite collection of eigenvalues
λ = λmn = −α2

mn for m = 0, 1, 2, . . ., n = 1, 2, . . .. For the case m = 0, there is one independent
eigenmode

v0n(r, θ) = J0(α0nr), for each n = 1, 2, . . . ,

while for m > 0, each λmn, n = 1, 2, . . ., yields two independent eigenmodes

vmn(r, θ) = Jm(αmnr) cos(mθ) and ṽmn(r, θ) = Jm(αmnr) sin(mθ) .

Now problem (34) must be solved for λmn = −α2
mn:

T′′ + c2α2
mnT = 0 , has independent solns cos(cαmnt) and sin(cαmnt) .

Thus, we finally arrive at a solution (modula ICs)

u(t, r, θ) =

∞∑
n=1

[a0,n cos(cα0,nt) + c0,n sin(cα0,nt)]J0(α0,nr)

+

∞∑
m,n=1

{ [
am,n cos(cαm,nt) + cm,n sin(cαm,nt)

]
cos(mθ)

+
[
bm,n cos(cαm,nt) + dm,n sin(cαm,nt)

]
sin(mθ)

}
Jm(αm,nr) (37)

Note that, in the radially symmetric case (when u = u(t, r) is independent of θ), we have the simpler
general solution

u(t, r) =

∞∑
n=1

[a0,n cos(cα0,nt) + c0,n sin(cα0,nt)]J0(α0,nr) . (38)

To find the coefficients in (37), we have

f (r, θ) = u(0, r, θ) =

∞∑
n=1

J0(α0,nr) +

∞∑
m,n=1

[am,n cos(mθ) + bm,n sin(mθ)]Jm(αm,nr),

so taking the L2(D) inner product with various eigenmodes vmn (or ṽmn) yields

a0,k =

〈
f (·, ·), J0(α0,k ·)

〉
‖J0(α0,k ·)‖22

=

∫ π

−π

∫ 1

0
f (r, θ)J0(α0,kr) r dr dθ

π J2
1(α0,n)

, k = 1, 2, . . . ,

am,k =

〈
f (·, ·), Jm(αm,k ·) cos(m ·)

〉
‖Jm(αm,k ·)‖22

=

∫ π

−π

∫ 1

0
f (r, θ)Jm(αm,kr) cos(mθ) r dr dθ

(π/2) J2
m+1(αm,k)

, m, k = 1, 2, . . . ,

bm,k =

〈
f (·, ·), Jm(αm,k ·) sin(m ·)

〉
‖Jm(αm,k ·)‖22

=

∫ π

−π

∫ 1

0
f (r, θ)Jm(αm,kr) sin(mθ) r dr dθ

(π/2) J2
m+1(αm,k)

, m, k = 1, 2, . . . .
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To get the other coefficients, we first note that

ut(t, r, θ) = c
∞∑

n=1

α0,nJ0(α0,nr)
[
c0,n cos(cα0,nt) − a0,n sin(cα0,nt)

]
+c

∞∑
m,n=1

αm,n
{[

cm,n cos(cαm,nt) − am,n sin(cαm,nt)
]

cos(mθ)

+
[
dm,n cos(cαm,nt) − bm,n sin(cαm,nt)

]
sin(mθ)

}
Jm(αm,nr)

Thus,

g(r, θ) = ut(0, r, θ)

= c
∞∑

n=1

c0,nα0,nJ0(α0,nr) + c
∞∑

m,n=1

αm,nJm(αm,nr)
[
cm,n cos(mθ) + dm,n sin(mθ)

]
.

Taking inner products on both sides with the various eigenmodes yields

c0,k =

∫ π

−π

∫ 1

0
g(r, θ)J0(α0,kr) r dr dθ

cα0,kπ J2
1(α0,k)

, k = 1, 2, . . . ,

cm,k =

∫ π

−π

∫ 1

0
g(r, θ)Jm(αm,kr) cos(mθ) r dr dθ

cαm,k(π/2) J2
m+1(αm,k)

, m, k = 1, 2, . . . , and

dm,k =

∫ π

−π

∫ 1

0
g(r, θ)Jm(αm,kr) sin(mθ) r dr dθ

cαm,k(π/2) J2
m+1(αm,k)

, m, k = 1, 2, . . . .

Finite Difference Approximations to 2nd Order Problems

Approximating derivatives

We have discussed the following finite difference approximations to derivatives of functions:
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1st derivatives: f ′(x) =
f (x + h) − f (x)

h
+ O(h) called a forward difference when h > 0

f ′(x) =
f (x) − f (x − h)

h
+ O(h) called a backward difference when h > 0

f ′(x) =
f (x + h) − f (x − h)

2h
+ O(h2) called a centered difference

2nd derivatives: f ′′(x) =
f (x − h) − 2 f (x) + f (x + h)

h2 + O(h2) another centered difference

During lecture

• Demonstrate order of convergence in Excel by computing various approximations to f ′(0)
with f (x) = ex. Start at h = 1, and keep halving this stepsize, looking at the ratio of current
error to prior error.

• Show how the forward difference formula, along with the estimate of its truncation error as
O(h), arises from Taylor’s Theorem with remainder.

Applying to Poisson’s equation (elliptic PDEs)

Consider first the Dirichlet Poisson problem on a rectangle—that is,

−∆u = f , in R =
{
(x, y)

∣∣∣ 0 < x < a, 0 < y < b
}
, subject to u = g on ∂R.

Assume a uniform partition of the rectangle in both the x and y-direction—that is,

0 = x0 < x1 < · · · < xN < xN+1 = a, with each x j − x j−1 = ∆x,
0 = y0 < y1 < · · · < yM < xM+1 = b, with each ym − ym−1 = ∆y.

For simplicity, let us take ∆x = ∆y = h. Let us denote our

approximation to u(x j, ym) = u( jh,mh) as u jm,

value of f (x j, ym) = f ( jh,mh) as f jm.

Note that
u0,m = g(0,mh) = g(0, ym), m = 0, 1, . . . ,M + 1,

uN+1,m = g((N + 1)h,mh) = g(a, ym), m = 0, 1, . . . ,M + 1,
u j,0 = g( jh, 0) = g(x j, 0), j = 0, 1, . . . ,N + 1,

u j,M+1 = g( jh, (M + 1)h) = g(x j, b), j = 0, 1, . . . ,N + 1.

Using a centered difference approximation for both uxx and uyy, we have

−
u(x − h, y) − 2u(x, y) + u(x + h, y)

h2 −
u(x, y − h) − 2u(x, y) + u(x, y + h)

h2 = f (x, y) ,
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or, applying this to the point (x j, ym),

4u j,m − u j−1,m − u j,m−1 − u j+1,m − u j,m+1 = h2 f j,m , j = 1, . . . ,N, m = 1, . . . ,M.

This problem has the same number of constraints as unknowns, and is linear in those unknowns,
and so we should formulate and solve it as a matrix problem AU = d. The most challenging aspect
is lexicographic. We choose to set Uk = u j,m where k = (m − 1) ∗ N + j, with the result that the
(MN)-by-(MN) coefficient matrix A is both sparse and is (2N + 1)-banded:

A =



4 −1 0 · · · 0 −1 0 · · ·

−1 4 −1 0 · · · 0 −1 0 · · ·

0 −1 4 −1 0 · · · 0 −1 0 · · ·

. . .
. . .

. . .
. . .

· · · 0 −1 0 · · · 0 −1 4 −1 0 · · · 0 −1 0 · · ·

. . .
. . .

. . .
. . .

· · · 0 −1 0 · · · 0 −1 4 −1 0
· · · 0 −1 0 · · · 0 −1 4 −1

· · · 0 −1 0 · · · 0 −1 4



.

Actually, the form presented above is misleading. The entries in the first super and subdiagonals of
A are not always (−1); there is an occasional zero, appearing every Nth entry. Here is a rudimentary
Octave code which creates the correct form of A:

superdiag = [];

for m = 1:M

superdiag = [superdiag; ones(N-1, 1)];

if (m != M)

superdiag = [superdiag; 0];

end

end

A = diag(4*ones(M*N, 1)) - diag(superdiag, -1) - diag(superdiag, 1) ...

- diag(ones((M-1)*N, 1), -N) - diag(ones((M-1)*N, 1), N);

The right-hand side vector d is made up both of the inhomogeneity f and the (known) boundary
values. Let us write

u(0, y) = `BC(y), u(x, 0) = bBC(x),
u(a, y) = rBC(y), u(x, b) = tBC(x).

Assuming that functions giving the BCs have been implemented in Octave in such a way that they
all return column vectors, and there is a function implementing the imhomogenity f (x, y) (so that
it is able to accept matrix arguments for x and y, as when these inputs have been built using the
meshgrid() command), the following Octave code excerpt will build an appropriate right-hand
side vector d:
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[xs, ys] = meshgrid(0:h:a, 0:h:b);

d = hˆ2 * f(xs(2:M+1, 2:N+1), ys(2:M+1, 2:N+1))(:);

d(1:N) += bBC(xs(1, 2:N+1))’;

d((M - 1)*N + (1:N)) += tBC(xs(1, 2:N+1))’;

d(1:N:M*N) += lBC(ys(2:M+1, 1));

d(N:N:M*N) += rBC(ys(2:M+1, 1));

Example 33: Various Instances of the Dirichlet Poisson Problem on a Rectangle

• First we do several instances of the Dirichlet Laplace problem (i.e., f ≡ 0 in Poisson’s
equation) on the square [0, 1] × [0, 1] with just one boundary of the rectangle nonzero.
The pair of scripts psset1.m and poissonSolver.m finds and graphs the solution with

u(0, y) = 0, u(x, 0) = x3(1 − x),
u(a, y) = 0, u(x, b) = 0.

Switching to psset3.m yields the solution to the Laplace problem with

u(0, y) = 0, u(x, 0) =

 x, 0 ≤ x ≤ 1/2,
1 − x, 1/2 < x ≤ 1,

u(a, y) = 0, u(x, b) = 0.

• The file psset2.m solves the Dirichlet Laplace problem on the rectangle (non-square)
[0, 1/2] × [0, 1], with BCs

u(0, y) = 4y, u(x, 0) = 16x2,

u(a, y) = 4, u(x, b) = 4,

all of which are nonhomogeneous.

Lecture highlight: My routine poissonSolver.m carries out the details of building and
solving the linear system of equations. In its first implementation, I was working from the
belief that both the first superdiagonal and subdiagonal of the matrix A consisted entirely
of (−1)’s. This previous implementation is preserved in the file psBad.m. It is instructive
to call that routine instead of poissonSolver.m from psset2.m. The resulting surface, the
graph of what is supposed to be an harmonic function, has an interior maximum. Thus,
awareness of theory (the maximum principle) informs us the routine has an error.

• Finally, in psset4.mwe solve the Dirichlet Poisson problem with inhomogeneity

f (x, y) = [(3x + x2)y(1 − y) + (3y + y2)x(1 − x)]ex+y ,

and zero boundary conditions on all four sides of the rectangle. The exact solution in this
instance is

u(x, y) = x(1 − x)y(1 − y)ex+y .

Lecture highlight: Some features of Octave to mention include
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• meshgrid() and mesh() functions

These are just the kinds of plotting (and related) functions one would want in order to
visualize a (numeric) solution on a grid.

• view(azimuth, elevation) function, relevant for 3D plots

• sparse matrices and matrix calculations

The file poissonSolver.m contains code (originally commented out) which converts the
coefficient matrix to a sparse one and allows for a comparison in solution time. You may
wish to add a spy(A) command in order to get a picture of how sparse A is.

• While the method may be applied to the Poisson problem on non-rectangular domains,
the details are more difficult to carry out. See [] for an example.

Finite Differences on Heat Problems (Parabolic PDEs)

Now consider the 1D heat equation

ut = γuxx, 0 < x < `, t > 0, subject to


BCs: u(t, 0) = α(t),

u(t, `) = β(t),
IC: u(0, x) = f (x).

(39)

For some fixed choice of ∆t, ∆x consider the uniform mesh

0 = t0 < t1 < t2 < · · · , 0 = x0 < x1 < · · · < xn = `,

with each t j+1 − t j = ∆t, xm+1 − xm = ∆x. Let us approximate t-derivatives with a forward
difference approximation, and x-derivatives with a centered difference approximation. Denoting
approximate values of u(t j, xm) by u jm, we have

u j+1,m − u j,m

∆t
= γ

u j,m−1 − 2u j,m + u j,m+1

(∆x)2 ,

or

u j+1,m = δu j,m−1 + (1 − 2δ)u j,m + δu j,m+1, (40)

where δ = γ∆t/(∆x)2, a difference equation which holds for j = 0, 1, 2, . . . , and m = 1, 2, . . . ,n − 1.
(See Problem 2 on Exam 1.) Let u( j) = (u j,1,u j,2, . . . ,u j,n−1). Then u(0) is given by the IC, while each

u( j+1) = Au( j) + b( j), (41)

where

A =



1 − 2δ δ

δ 1 − 2δ δ
. . .

. . .
. . .

δ 1 − 2δ δ

δ 1 − 2δ


and b( j) =



δα(t j)
0
...

0
δβ(t j)


.
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Take note of where the IC/BCs figure in to these equations.

Example 34: Finite Difference Solution of Heat Equation

Solve the problem

ut = uxx, 0 < x < 1, t > 0, subject to

 BCs: u(t, 0) = 0 = u(t, `),
IC: u(0, x) = f (x),

where

f (x) =


−x, 0 ≤ x ≤ 1/5,
x − 2/5, 1/5 < x ≤ 7/10,
1 − x, 7/10 < x ≤ 1.

Note: Olver poses this problem first in Section 4.1 (see p. 123), and returns to it in Section 10.2,
where he solves it using this same divided difference approach.

Solution. In class, use the Octave scriptheatSet1.m that employs (41) (encoded infdHeatSolver.m)
to solve this heat problem with fixed ∆x = 0.1 and several different time steps: ∆t = 0.01, 0.005.
Students may recall we had a condition on the size of time step when applying finite differences
to the (1st order) transport equation. In the above, finite difference solutions look meaningful
only for the smaller of the two time steps.

Von Neumann Stability Analysis

A numerical algorithm is called stable if ...

The idea behind Von Neumann’s method for analyzing the stability of a numerical algorithm is to:

• Consider a discrete eigenmode solution at the jth time step.

• Use the algorithm to find what has happened to this solution at the ( j + 1)st time step. It will
be a scalar multiple of the discrete eigenmode at time step j. Look at the scalar multiplier to
see that it is less than 1 in absolute value. (Otherwise, the contribution of this eigenmode is
growing in time.)

Let us apply this idea to the heat problem ut = γuxx on (0, π) × (0,∞). With

• homogeneous Dirichlet BCs we get eigenfunctions sin x, sin(2x), sin(3x), . . . ,

• homogeneous Neumann BCs we get eigenfunctions 1, cos x, cos(2x), cos(3x), . . . ,
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and resulting eigensolutions are time-varying rescalings of these. Both collections are both found
in eikx, k = 0, 1, . . ., one as the real part, the other as the imaginary.

Suppose the solution at some time step is a pure eigenmode eikx; that is, u j,m = eikxm . Then

u j+1,m = δu j,m−1 + (1 − 2δ)u j,m + δu j,m+1 = δeikxm−1 + (1 − 2δ)eikxm + δeikxm+1

= δeik(xm−∆x) + (1 − 2δ)eikxm + δeik(xm+∆x) = [δe−ik∆x + (1 − 2δ) + δeik∆x]eikxm

= λu j,m ,

where the multiplier λ satisfies

λ = δe−ik∆x + (1 − 2δ) + δeik∆x

= δ[cos(k∆x) − i sin(k∆x)] + (1 − 2δ) + δ[cos(k∆x) + i sin(k∆x)]

= 1 − 2[1 − cos(k∆x)]δ = 1 − 4δ sin2(k∆x/2) .

Argue that stability requires |λ| ≤ 1, yielding CFL condition

∆t ≤
(∆x)2

2γ
.

An Implicit Algorithm

Let us alter the previous finite difference approach slightly, employing a backward difference
approximation for ut:

ut(t, x) ≈
u(t, x) − u(t − ∆t, x)

∆t
,

but using the same centered difference approximation for uxx. Inserting these finite differences at
the point (t j, xm) yields the difference equation

u j,m − u j−1,m

∆t
= γ

u j,m−1 − 2u j,m + u j,m+1

(∆x)2 .

Making the change j 7→ j + 1 and doing some algebraic manipulations so as to get unknowns (at
the ( j + 1)st time step) and knowns (at the jth time step) on opposite sides of the equation, we have

−δu j+1,m−1 + (1 + 2δ)u j+1,m − δu j+1,m+1 = u j,m , (42)

where δ = γ∆t/(∆x)2 as before.

The previous finite difference approach (40) is said to be explicit because the (only) unknown is
solved for explicitly in terms of known quantities. In contrast, (42) involves multiple unknowns,
and so is an implicit scheme.

Taking (again) u( j) = (u j,1,u j,2, . . . ,u j,n−1), we see that the implicit finite difference scheme (42)
applied to the homogeneous Dirichlet heat problem (39) has matrix formulation

Au( j+1) = u( j) + b( j),
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where

A =



1 + 2δ −δ

−δ 1 + 2δ −δ
. . .

. . .
. . .

−δ 1 + 2δ −δ

−δ 1 + 2δ


and b( j) =



δα(t j+1)
0
...

0
δβ(t j+1)


.

Example 35: Implicit Finite Difference Algorithm Solution of Heat Equation

Solve the problem

ut = uxx, 0 < x < 1, t > 0, subject to

 BCs: u(t, 0) = 0 = u(t, `),
IC: u(0, x) = f (x),

where

f (x) =


−x, 0 ≤ x ≤ 1/5,
x − 2/5, 1/5 < x ≤ 7/10,
1 − x, 7/10 < x ≤ 1.

Solution. In class, use the Octave script impHeatSet1.m that employs (42) (encoded in
implicitFDHeatSolver.m) to solve this heat problem with fixed ∆x = 0.1 and increasing
choices for time steps: ∆t = 0.01, 0.05, 0.1. Each of these choices yields a solution that appears
to be meaningful.

Stability Analysis of Implicit Scheme: Heat Equation

Because it is a known quantity in (42) which is solved for, this time we will assume the solution at the
( j + 1)st time step is a pure eigenmode—that is, that for some fixed natural number k, u j+1,m = eikxm .
Then, after (42), we have

u j,m = −δeik(xm−∆x) + (1 + 2δ)eikxm − δeik(xm+∆x)

=
[
−δe−ik∆x + (1 + 2δ) − δeik∆x

]
eikxm

= λu j+1,m ,

where

λ = −δ(e−ik∆x + eik∆x) + 1 + 2δ = −2δ cos(k∆x) + 1 + 2δ

= 1 + 4δ
[
1 − cos(k∆x)

2

]
= 1 + 4δ sin2

(
k∆x

2

)
≥ 1
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for all δ ≥ 0. Hence, the implicit scheme is unconditionally stable—i.e., there is no CFL condition—as

u j+1,m =
1
λ

u j,m ,

with 0 < λ−1
≤ 1 for all choices of δ = γ∆t/(∆x)2.

Neumann Boundary Conditions

See the following files/exercises:

• /Users/scofield/courses/333/exercises/tveito-Winther/exercises/ch02/e14 mod.tex

• /Users/scofield/courses/333/exercises/olver/c10/10.2.07.tex

Finite Differences on Wave Problems (Hyperbolic PDEs)

Consider the one-dimensional wave problem

utt = c2uxx, 0 < x < `, t > 0, subject to


BCs: u(t, 0) = α(t),

u(t, `) = β(t),
ICs: u(0, x) = f (x),

ut(0, x) = g(x).

(43)

For fixed ∆t > 0 and ∆x > 0, we will assume a uniform grid

0 = t0 < t1 < t2 < . . . , 0 = x0 < x1 < x2 < . . . < xn = `,

with each t j − t j−1 = ∆t and each xm − xm−1 = ∆x. Let us apply centered difference approximations
to the 2nd derivatives utt, uxx. We write u j,m for our approximation to the solution u(t j, xm), which
satisfies

u j−1,m − 2u j,m + u j+1,m

(∆t)2 = c2 u j,m−1 − 2u j,m + u j,m+1

(∆x)2 ,

or, taking σ = c∆t/∆x,

u j+1,m = σ2u j,m+1 + 2(1 − σ2)u j,m + σ2u j,m−1 − u j−1,m, (44)

for j = 1, 2, . . ., m = 1, 2, . . . ,n − 1.

x

t

xm−1

xm

xm+1

t j−1 t j t j+1

The computation molecule for (44) appears at right, with the node at (t j+1, xm) drawn as an open
circle showing it is the one unknown when (44) is applied. This algorithm is rightly called an
explicit three-level scheme. Again writing u( j) = (u j,1,u j,2, . . . ,u j,n−1) for the vector of unknowns
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at the jth time step, we rewrite (44) in matrix form u( j+1) = Au( j)
− u( j−1) + b( j), j = 1, 2, . . ., where

A =



2(1 − σ2) σ2 0 · · · 0

σ2 2(1 − σ2) σ2 . . .
...

0
. . .

. . .
. . . 0

...
. . . σ2

0 · · · 0 σ2 2(1 − σ2)


, and b( j) =



σ2α(t j)
0
...

0
σ2β(t j)


.

Naturally, we take u(0) = ( f (x1), f (x2), . . . , f (xn−1)) but, to get things going, we require something
other than (44) to find the entries of u(1). That is where the initial velocity g(x) gets used. The
simplest way to start off is to use a forward difference approximation

g(xm) = ut(0, xm) ≈
u(t1, xm) − u(0, xm)

∆t
=

u(t1, xm) − f (xm)
∆t

⇒ u1,m = f (xm) + g(xm)∆t .

The drawback to this is that we are using O((∆t)2) and O((∆x)2) approximations for derivatives
everywhere else in the scheme; an O(∆t) forward difference approximation can potentially intro-
duce much greater error than the other approximations, and would appear at the very start of the
method!

If we assume the wave equation holds on the initial line where t = 0 and that we have sufficient
differentiability, we may employ Taylor’s theorem to write

u(∆t, xm) = u(0, xm) + (∆t)ut(0, xm) +
(∆t)2

2
utt(0, xm) +

(∆t)3

6
uttt(t̃, xm) (with 0 < t̃ < ∆t)

= φ(xm) + g(xm)∆t +
c2(∆t)2

2
uxx(0, xm) + O((∆t)3)

= φ(xm) + g(xm)∆t +
c2(∆t)2

2
f ′′(xm) + O((∆t)3)

= φ(xm) + g(xm)∆t +
c2(∆t)2

2
·

f (xm−1) − 2 f (xm) + f (xm+1)
(∆x)2 + O((∆x)2) + O((∆t)3) ,

where the last expression replaces its predecessor so that we do not need to numerically differentiate
f . Thus, we take

u1,m =
σ2

2
f (xm−1) + (1 − σ2) f (xm) +

σ2

2
f (xm+1) + g(xm)∆t , m = 1, 2, . . . ,n − 1.

Numerically, one finds this algorithm behaves poorly if σ is too large, suggesting a CFL condition
must be met. In fact, numerical stability requires that

σ := c∆t/∆x ≤ 1, (45)

which is equivalent to saying c ≤ ∆x/∆t, the same condition required for stability when solving the
first order transport equation using finite differences. (For an justification of this CFL condition
based on the numerical domain of dependence, see Olver, p. 459, or Stanoyevitch, pp. 548–549.)
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Algorithm for solving (43): Choose ∆t, ∆x in such a manner that σ := c∆t/∆x ≤ 1 and
n := `/∆x is an integer, and set t j = j∆t, xm = m∆x. Initialize the algorithm by setting
u(0) = ( f (x1), f (x2), . . . , f (xn−1)) and u(1) = 1

2 Au(0) + 1
2 b(0) + (∆t)g, where

A =



2(1 − σ2) σ2 0 · · · 0

σ2 2(1 − σ2) σ2 . . .
...

0
. . .

. . .
. . . 0

...
. . . σ2

0 · · · 0 σ2 2(1 − σ2)


, b( j) =



σ2α(t j)
0
...

0
σ2β(t j)


, and g =



g(x1)
g(x2)
g(x3)
...

g(xn−1)


.

Then, for j = 1, 2, . . ., set u( j+1) = Au( j)
− u( j−1) + b( j).

According to Stanoyevitch, p. 548, this algorithm “can be proved to converge to the exact solution
of the wave problem (43) (as the partitions become more and more refined) provided that, in
addition to the required differentiability assumptions, the . . . CFL condition” (45) holds. The
approximations which led to this algorithm are often applied to obtain algorithms for more general
hyperbolic linear PDEs and, indeed, according to Stanoyevitch, are often applied to nonlinear
problems as well.

Some General Comments on Finite Difference Methods

• Finite difference methods are easiest to apply in rectangular (or multidimensional rectangu-
lar) regions.

• In our discussion, we have applied finite difference methods to the simplest manifestations
of the prototypical problems: Poisson’s equation in two dimensions, the homogeneous one-
dimensional heat equation, and the homogeneous one-dimensional wave equation. There
is nothing to bar us from applying the same approaches to other representatives from their
respective classes: elliptic, parabolic and hyperbolic (linear) PDEs, homogeneous and non-
homogeneous. They are even successfully applied to nonlinear PDEs. Nevertheless, we
should exercise caution, applying what we know of CFL conditions, keeping an eye out for
numerical instability and, so far as we are able, checking that our solutions are reasonable.
Regarding numerical methods for nonlinear PDEs, Stanoyevitch says

In general those that are based on conservation laws (physical principles) are the
most successful. This seems to imply that a purely mathematical approach to the
numerical solution of nonlinear PDEs is not sufficient; an additional requirement
is a certain knowledge of the physical principles governing the phenomena that
are modeled by the PDEs.2

2Stanoyevitch, p. 549.
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Classifying PDEs

We have focused a great deal on the prototypical equations: Poisson’s equation (of which Laplace’s
equation is the homogeneous version), the heat equation and the wave equation. These each
are, respectively, representatives from three different families or classes of PDEs: elliptic PDEs,
parabolic PDEs, and hyperbolic PDEs. Consider a PDE of the form

Auxx + Buxt + Cutt + F(x, t,u,ux,ut) = 0 , (46)

where A, B, and C are constants, not all of which are zero. The principal part of this equation,

Auxx + Buxt + Cutt ,

is linear, and is the basis for classification. We define the discriminant

∆ := B2
− 4AC ,

and say that (46) is

• elliptic if ∆ < 0,

• parabolic if ∆ = 0, and

• hyperbolic if ∆ > 0.

The names for these classifications are based on the planar curves arising from algebraic equations
of the form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 ,

which, in non-degenerate cases, are ellipses, parabolas and hyperbolas when ∆ < 0, ∆ = 0, and
∆ > 0 respectively. The reason for the classifications is that, “as it turns out, all parabolic equations
are diffusion-like, all hyperbolic equations are weave-like, and all elliptic equations are static.”3

Some remarks:

• In the static (elliptic) case, we have only spatial variables, and we would typically replace t
in (46) with y.

• When the coefficients A, B, C are non-constant, depending on t, x, and perhaps even u (so the
principal part is nonlinear), then ∆ can change sign. We can still talk about regions where
the problem is elliptic with ∆ = ∆(t, x) < 0 (linear principal part case), etc.

• While we discuss these classifications in the context of two independent variables, “the
terminology, underlying properties, and associated physical models carry over to second
order partial differential equations in higher dimensions.”4

3Logan, p. 45.
4Olver, p. 168.
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• While first order PDEs do not fall into this discussion, their solutions exhibit wave-like
behavior, and so they are usually grouped with hyperbolic PDEs.

Following Logan (see pp. 46–48), we propose a linear change of variables

τ = at + bx, ξ = ct + dx, or

τξ
 =

a b
c d

 t
x

 , (47)

assuming the determinant ad − bc , 0, so the transformation may be inverted. If we then take
U(τ, ξ) = U(at + bx, ct + dx) = u(t, x), then (after some tedious chain rule calculations)

Auxx + Buxt + Cutt = (Ab2 + Bab + Ca2)Uττ + [2Abd + B(ad + bc) + 2Cac]Uτξ

+(Ad2 + Bcd + Cc2)Uξξ (48)

Hyperbolic case ∆ > 0: We propose to put (46) into the form

Uτξ + G(ξ, τ,U,Uτ,Uξ) = 0 . (49)

Recall that it was through an invertible change of variables like (47) that we transformed the wave
equation into the form (49) and arrived at d’Alembert’s formula. Thus, if what we propose is
possible, then any hyperbolic PDE may, under a transformation (47), be written in such a way as
to have the same principal part as the wave equation.

Now, if A = C = 0, then we get this trivially by taking b = c = 0, a = 1, d = 1/B, so that τ = t and
ξ = x/B. Hence, we assume that at least one of A, C is nonzero; without loss of generality, C , 0.
Then by taking b = d = 1,

a =
−B +

√
∆

2C
, and c =

−B −
√

∆

2C

then the right-hand side of (48) becomes a constant multiple of Uτξ, from which we arrive at (49).

Parabolic case ∆ = 0: Here, we propose to put (46) into the form

Uξξ + G(ξ, τ,U,Uτ,Uξ) = 0 , (50)

which is like the heat equation in principal part. Note that, if B = 0, precisely one of A or C is zero
while the other is nonzero (to avoid the case where our PDE is not even 2nd order), which means
the PDE (46) is already in the form (50). Thus, we assume B , 0 which necessitates A, C , 0 as
well. Then taking

ξ = x, τ = x −
B

2C
t

achieves the form (50).

Elliptic case ∆ < 0: In this case we have both A, C , 0. Then the transformation

τ = −
B

2C
t + x, ξ = −

√
−∆

2C
t
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turns (46) into

−
∆

4C
(Uττ + Uξξ) + G(τ, ξ,U,Uτ,Uξ) = 0 ,

which (after dividing through by the common constant multiplier (−∆/(4C))) has principal part
equal to that of Laplace’s equation for U.

Olver says that “the field of partial differential equations splits into . . . four subfields, (hyperbolic,
parabolic, and elliptic PDEs, and) the last containing all the equations, including higher order
equations, that do not fit into the preceding categorization.5

Finite Element Methods

Solving Via Minimization

We start with several definitions.

Definition 27. Let V be an inner product space. A linear operator L : D ⊂ V → V is said to be
positive definite if 〈v,Lv〉 > 0 for every v , 0 in D. If 〈v,Lv〉 ≥ 0 for every v ∈ D, then L is said to
be positive semidefinite.

The first step is to show that some operator equations may be solved by minimizing a related
quadratic functional.

Theorem 28. Suppose V is a real inner product space, and K : V → V is a self-adjoint positive
definite linear operator. Suppose the operator equation

K[u] = f

has a solution. Then this solution, call it u?, is unique. Moreover, if we define an associated
quadratic functional

Q[u] :=
1
2
〈u,K[u]〉 −

〈
f ,u

〉
(51)

for all admissable u ∈ V, then Q[u?] < Q[u] for all admissable u , u?.

Proof. To establish uniqueness of solution, suppose u, v ∈ V are such that K[u] = K[v] = f . Then

〈u − v,K[u − v]〉 = 〈u − v,K[u] − K[v]〉 =
〈
u − v, f − f

〉
= 〈u − v, 0〉 = 0 .

5Olver, p. 168.
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By positive definiteness, u = v.

Now note that, for any admissible u

Q[u] =
1
2
〈u,K[u]〉 −

〈
u, f

〉
=

1
2
〈u,K[u]〉 − 〈u, k[u?]〉

=
1
2
〈u,K[u]〉 −

1
2
〈u,K[u?]〉 −

1
2
〈u,K[u?]〉

=
1
2
〈u,K[u − u?]〉 −

1
2
〈u?,K[u]〉

=
1
2
〈u,K[u − u?]〉 −

1
2

{
〈u?,K[u − u?]〉 + 〈u?,K[u?] − K[u]〉

}
−

1
2
〈u?,K[u]〉

=
1
2
〈u − u?,K[u − u?]〉 −

1
2
〈u?,K[u?]〉 .

But 〈u − u?,K[u − u?]〉 ≥ 0 and achieves its minimum value zero when and only when u = u?.
Thus, Q also is minimized (uniquely) when u = u?. �

Example 36:

Consider the ODE/BVP

−y′′ = f (x), 0 < x < `, subject to BCs y(0) = 0 = y(`). (52)

We are working here with the operator K[y] = −y′′, the one-dimensional negative Laplacian,
subject to homogeneous Dirchlet BCs, so it is self-adjoint and positive definite. To see the latter
of these assertions, note that for each φ that is twice-differentiable in (0, `) with φ′′ ∈ L2(0, `)
(the natural inner product space for us to work in), we have

〈
φ,K[φ]

〉
= −

∫ `

0
φ(x)φ′′(x) dx = −φ(x)φ′(x)

∣∣∣∣`
0

+

∫ `

0
[φ′(x)]2 dx =

〈〈
φ,φ

〉〉
≥ 0,

where 〈〈·, ·〉〉 denotes the 1-dimensional Dirichlet inner product

〈〈
φ,ψ

〉〉
:=

∫ `

0
φ′(x)ψ′(x) dx . (53)

Note that 〈〈·, ·〉〉 is not truly an inner product in many contexts, as one can have
〈〈
φ,φ

〉〉
= 0

with φ , 0. However, with our BCs,
〈〈
φ,φ

〉〉
= 0 implies φ ≡ 0.

Thus, the solution (if one exists) of our problem is the function y? minimizing

Q[y] :=
1
2
〈
y,Ky

〉
−

〈
f , y

〉
=

1
2
〈〈

y, y
〉〉
−

〈
f , y

〉
.
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It is interesting to note that, while the operator K requires its arguments to be (at least piecewise)
twice differentiable, Q (in its formulation involving the Dirichlet inner product) only requires
arguments (admissible functions) from

A =
{
ν : [0, `]→ R

∣∣∣ ν is continuous, ν′ is PWC and bdd., and ν(0) = 0 = ν(`)
}
.

As was the case when we solved IBVPs using Fourier series, if we solve (52) by a process which
minimizes the associated functional Q, the result may be a weak solution.

Example 37: Poisson Problem in the Plane with Dirichlet BCs

Consider the problem

−∆u = f , (x, y) ∈ Ω, with u = 0 for (x, y) ∈ ∂Ω.

Here we assume that Ω is a bounded, connected region in Rn (say, n = 2 or 3) with piecewise
smooth boundary ∂Ω. Working under the inner product of L2(Ω), our operator K = −∆ (with
the prescribed BCs) is once again self-adjoint and positive definite. The argument for the latter
is similar to the above〈

φ,K[φ]
〉

= −

∫
Ω

φ(x) ∆φ(x) dx = −

∫
∂Ω
φ(x) (∇φ ·n)(x) dσ +

∫
Ω

∇φ(x) ·∇φ(x) dx

=

∫
Ω

‖∇φ(x)‖2 dx =
〈〈
φ,φ

〉〉
≥ 0 ,

where the n-dimensional Dirichlet inner product (truly an inner product because of the BCs) is
given by〈〈

φ,ψ
〉〉

:=
∫

Ω

∇φ(x) ·∇ψ(x) dx (54)

Hence, the solution to our problem, when it exists, is the unique minimizer u? of the functional

Q[u] :=
1
2
〈u,Ku〉 −

〈
f ,u

〉
=

1
2
〈〈u,u〉〉 −

〈
f ,u

〉
.

Note that, in the case Ω ⊂ R2,

Q[u] =

"
Ω

(1
2

u2
x +

1
2

u2
y − f u

)
dx dy

and is defined (at least) for all functions u which are piecewiseC1 in Ω and satisfy the homogeneous
Dirichlet BCs.
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FEM: General Rayleigh-Ritz Approach

We have established that a linear operator equation K[u] = f subject to homogeneous Dirichlet
BCs, with K self-adjoint and positive definite, may be recast in the variational form

min
u∈D

Q[u], (55)

where Q is a quadratic functional, and this minimization occurs over some collection D of admissi-
ble functions in a larger inner product spaceV (probably an L2 space). Even though the admissible
functions D (generally) do not constitute the full space, D is (usually) an infinite-dimensional sub-
space. The idea behind the Rayleigh-Ritz6 approach to FEM is to severely restrict the scope of
our search for a minimizer. Instead of searching throughout D, we limit our search to admissi-
ble functions lying in some finite-dimensional subspace W. In particular, we may fix a choice of
independent functions φ1, φ2, . . . , φn ∈ D and takeW = span({φ1, . . . , φn}). We then look to solve

min
u∈W

Q[u]. (56)

Since each u ∈ W has the form

u(x) =

n∑
j=1

c jφ j(x) ,

(56) is really about choosing the best coefficients c = (c1, . . . , cn). In an abuse of notation, we now
write our quadratic functional as if the input is c:

Q(c) :=
1
2
〈u,K[u]〉 −

〈
f ,u

〉
, with u = u(x; c) =

n∑
j=1

c jφ j(x) .

Plugging the latter expression for u into the functional yields

Q(c) =
1
2

〈∑
i

ciφi,K
[∑

j

c jφ j

]〉
−

〈
f ,
∑

i

ciφi

〉
=

1
2

∑
i

∑
j

cic j

〈
φi,K[φ j]

〉
−

∑
i

ci

〈
f , φi

〉
=

1
2

cTMc − cTb , (57)

where the stiffness matrix M = (mi j) and load vector b = (b1, . . . , bn) are given by

mi j =
〈
φi,K[φ j]

〉
, bi =

〈
f , φi

〉
, (58)

for i = 1, . . . ,n, and j = 1, . . . ,n. The problem of minimizing a quadratic functional (57) may be
a new one to us, but it is a elementary problem in optimization. The stiffness matrix M, like the

6For short blurbs about Rayleigh and Ritz, see Stanoyevitch, p. 426.
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underlying operator K, is symmetric (self-adjoint) and positive definite (so nonsingular), and the
minimizer is known to be the unique solution of

Mc = b, that is, c = M−1b.

Example 38: Hat Function Basis for One-Dimensional ODEs/BVPs

It seems one of the most common bases to use
in the case of a 1-dimensional ODEs/BVP on
[a, b] with homogeneous Dirichlet BCs is one
consisting of hat functions. Let us take the
(possibly non-uniform) partition

a = x0 < x1 < x2 < · · · < xn+1 = b,

x

1

x0

a

x1 x2 x3 x4 x5
. . .

b

xn+1

φ3(x)

with hk = xk+1 − xk for k = 0, . . . ,n, and for j = 1, 2, . . . ,n let φ j(x) be the continuous function
which is linear on each subinterval [xk, xk+1] and whose values at mesh points are given by
φ j(xm) = δ jm (Kronecker delta). A plot of φ4(x) appears above at right.

Now recall that the problem (52)

−y′′ = f (x), 0 < x < `, subject to BCs y(0) = 0 = y(`),

may be solved by minimizing the functional

Q[ν] :=
1
2
〈〈ν, ν〉〉 −

〈
f , ν

〉
=

1
2

∫ `

0

(dν
dx

)2

− f (x)ν(x)

 dx ,

over the set of admissible functions

A =
{
ν : [0, `]→ R

∣∣∣ ν is continuous, ν′ is PWC and bdd., and ν(0) = 0 = ν(`)
}
.

The piecewise linear Rayleigh-Ritz method assumes a partition of the interval [0, `] and seeks
to minimize our functional over the finite-dimensional collection of piecewise linear functions
W = span({φ1, φ2, . . . , φn}). That is, we take as our approximate solution

ỹ(x) =

n∑
j=1

c jφ j(x) ,

where the c j’s are the entries of the vector c which satisfies Mc = b, with M = (mi j) and b
having entries given by

mi j =
〈
φi, φ

′′

j

〉
=

〈〈
φi, φ j

〉〉
=

∫ `

0
φ′i (x)φ′j(x) dx = · · · =


1

hi−1
+

1
hi
, i = j,

−
1

hmin{i, j}
, | j − i| = 1,

0, | j − i| > 1,

(59)

bi =
〈

f , φi

〉
= · · · =

1
hi−1

∫ xi

xi−1

f (x)(x − xi−1) dx +
1
hi

∫ xi+1

xi

f (x)(xi+1 − x) dx . (60)
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Some remarks:

• The matrix M is tridiagonal (sparse), which is highly desirable, as the number of elements
(in this case, subintervals of the original domain [0, `]) may typically be quite large. This
sparsity is owing to the fact that the support of the basis functions is fairly small and
overlaps with the support of just two other basis functions. In settings where more
elaborate basis functions are used, this property is still desirable.

• It is generally wise to place more nodes in regions where the (known) coefficient functions
of the differential equation undergo more activity.

• When maxi hi is small, we might use the trapezoid rule to evaluate the integrals in (60) for
the bi’s, we get

bi ≈
1

2hi−1
[0 + f (xi)hi−1]hi−1 +

1
2hi

[ f (xi)hi + 0]hi =
1
2

f (xi)(hi−1 + hi) .

After Stanoyevitch, p. 435ff, apply these ideas to (52) with ` = 1 and

f (x) = 100 sin
(

sign (x − 0.5) exp
(

1
4|x − 0.5|1.05 + 0.3

))
exp

(
1

4|x − 0.5|1.2 + 0.2
− 100(x − 0.5)2

)
.

The code for doing so is found in the file stanoP436.m. Some new Octave/Matlab commands
of note:

diff(), sign(), end as an index to a vector

The first few lines of the code contain a choice between two types of meshes, one that is
uniform, and one that is adaptive, being rather coarse where f is well behaved but much finer
in the region 0.35 ≤ x ≤ 0.65 where f is highly oscillatory. There is also a switch controlling
whether the elements of the load vector b are computed using accurate numerical integration
or with the trapezoid rule approximation mentioned above. Results are quite different between
the two methods using the uniform mesh, but about identical for the adaptive mesh.

FEM in Two Spatial Dimensions

We now turn to problems in higher (spatial) dimensions. Just going to two dimensions represents
a significant step; that is as far as we will go. Let us continue to assume we are dealing with static
(elliptic) problems, and that these are accompanied by homogeneous BCs on bounded, open and
connected domains Ω.
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Triangulation

We focus first on a two-dimensional analog to the hat functions of the previous example. The way
we got those hat functions was to begin with mesh points spaced (perhaps unevenly) through-
out a one-dimensional interval. In two dimensions we will want not only mesh points, but a
triangulation of those mesh points.

Definition 29. Let P1, . . . , Pn be points in the plane R2. The Voronoi region V(Pi) corresponding
to point Pi is the set

{
Q ∈ R2 : |Q − Pi| < |Q − Pk| for k , i

}
. A plot of the borders between Voronoi

regions is called a Voronoi diagram.

Example 39:

Consider the points P1 = (1, 1), P2 = (3, 1.5),
P3 = (2, 4), P4 = (0.5, 2.2), and P5 = (2, 2.5) in
the plane. The following Octave commands
display the Voronoi diagram for these points.

pts = [1 1; 3 1.5; 2 4; 0.5 2.2; 2 2.5];

xVals = pts(:, 1);

yVals = pts(:, 2);

voronoi(xVals, yVals)

axis([0 5 0 5])

All but one of the Voronoi regions, of course,
are unbounded.

0

1

2

3

4

5

0 1 2 3 4 5

Imagine a set P of points like the one in the previous example. There are many ways the points
of Pmay be joined by edges to form triangles. One algorithm, known as Delaunay triangulation,
joins those points (and only those) whose Voronoi regions share a common edge. (Try drawing
such triangles in the diagram above.) Here are some properties of the Delaunay triangulation:

• Consider a triangle resulting from the Delaunay triangulation. This triangle joins three
points, say p1, p2 and p3, of P. There exists a point q ∈ R2 equidistant from p1, p2 and p3, but
whose distance to every other point in P is larger.

• The minimum angle in each of the triangles arising from Delaunay triangulation is as large
is possible from any triangulation of the same set P of points.

We demonstrate Octave commands for carrying out Delaunay triangulation next in the context of
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several difference collections of points in the unit circle.

Example 40: Points Distributed Uniformly in the Unit Circle

Suppose we wish to place N points inside the unit circle so that the distances between them
are roughly the same. The main code computes positions for such points (with N = 300),
placing them in vectors x and y. Once that is completed, we invoke (in the final three lines)
the delaunay() command to generate a triangulation and trimesh() to graph the result.
% program taken from Stanoyevitch, p. 614

clear x y

N = 300;

delta = sqrt(pi/N);

x(1) = 0; y(1) = 0;

nodecount = 1;

ncirc = floor(1 / delta);

minrad = 1 / ncirc;

for j = 1:ncirc

rad = j * minrad;

nnodes = floor(2*pi*rad / delta);

anglegap = 2*pi / nnodes;

for k = 1:nnodes

x(nodecount + 1) = rad * cos(k*anglegap);

y(nodecount + 1) = rad * sin(k*anglegap);

nodecount += 1;

end

end

tri = delaunay(x, y);

trimesh(tri, x, y)

axis(’equal’)
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Example 41: Points Distributed More Densely as They Approach the Boundary

We may have reason to require just a few mesh points far from the boundary, but more densely
packed ones near it. The resulting Delaunay triangulation may be reminiscent of a painting
by M.C. Escher.
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xb(1) = 0; yb(1) = 0;

oldnodes = 1; % current number of nodes

rnodes = 299 % remaining number of nodes

newnodes = 299 % # nodes to add next circle

radcount = 1; % counter for circles

while (newnodes < rnodes / 2)

rad = 1 - 2ˆ(-radcount);

for j = 1:newnodes

xb(oldnodes + j) = rad*cos(2*pi*j/newnodes);

yb(oldnodes + j) = rad*sin(2*pi*j/newnodes);

end

oldnodes += newnodes;

rnodes -= newnodes;

radcount += 1;

newnodes *= 2;

end

% deploy remaining nodes on boundary

for j = 1:rnodes

xb(oldnodes + j) = cos(2*pi*j/rnodes);

yb(oldnodes + j) = sin(2*pi*j/rnodes);

end

tri = delaunay(xb, yb);

trimesh(tri, xb, yb)

axis(’equal’)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Pyramid Functions

The two-dimensional analog to a one-dimensional hat function is a pyramid function. Suppose
P is a set made up of points both on the boundary of and interior to a domain Ω. Let P j be one
of the interior points (that is, not on ∂Ω). The corresponding pyramid function φ j takes the value
1 at P j, is 0 at every other point in P, and is continuous and piecewise linear (that is, it is made
up of patches of planes). More specifically, above every triangle from the triangulation of Ω lies a
triangular patch of plane.
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