
Linear Algebra, Statistics, and Vector
Calculus for Engineers

T. Scofield and M. Stob

January 26, 2009

Foreward

These notes are for use in the course MATH 232, a 2nd mathematics course for engineering
students following the Calculus sequence at Calvin College. Their suitability for other
courses in other settings is by no means assured.

The linear algebra part (Part I) of these notes have undergone significant revision after
my first attempt to use them. My thanks go out to the students in that first semester who
provided helpful input. I am also grateful for the input of my colleagues, and for certain
articles written by Carlson, Lay, and other members of the Linear Algebra Curriculum
Study Group formed in 1990, in so far as they have assisted in the choice of topics from
linear algebra, whose content comprises about (5/13)ths of this course, to include.

I am greatly indebted to Michael Stob for writing (except for very minor changes on
my part) Part II of these notes, giving an introductory treatment of statistics. He not only
wrote the notes, but also volunteered, above and beyond his assigned duties as a full-time
faculty member at Calvin, to teach the statistics part of the course during its first run using
his notes. Furthermore, both of us are indebted to Randall Pruim, another colleague in the
Department of Mathematics and Statistics at Calvin, for his pre-existing organizational
structure which greatly streamlined the typesetting of these notes, and for examples he
had prepared already in the writing his own text for probability and statistics.

Despite all this help, it is I who is responsible for putting together these notes in their
current form. The errors are all mine.

Thomas L. Scofield
Aug. 13, 2008

iii

A Note to Students

The three main topics in this course—linear algebra, statistics and vector calculus (par-
ticularly integration in vector fields)—are taught in separate courses at a majority of
institutions around the country. At Calvin College we offer this introduction to the three
subjects, taught in 3- to 5-week modules, in a single course. We do so not because we wish
to be unique, but rather because of the number of credits already required of engineering
students in their major program and by the Core Curriculum.

The material in this course has been chosen so as to provide literacy in these three
topics. With just 3–5 weeks to spend on each, we will not have much time for delving
into applications. The kinds of applications of current interest to engineers are often quite
advanced, putting them out of reach for a one-semester course such as this one. Our goals,
then, are to gain the ability to do simple problems (often with the aid of software) and, just
as importantly, the ability to talk intelligently in these three mathematical subjects, at least
at the foundational level. Another goal, still important but less so than those just stated,
is to develop facility with several industry-standard software packages (the ability both
to use them and to interpret results from them). To evaluate your progress towards these
goals, test questions will be given fitting the following types:

• procedural: You must be able to identify reliable procedures to use in a given
scenario, and to apply them correctly to obtain an answer. Often, both for the
purpose of saving time during the test period and to test further the depth of your
understanding, the problem scenario will provide you with a ‘start’ you may not be
accustomed to in homework (like the difference between asking a young pianist to
start in the middle of a piece instead of at the beginning).

• conceptual: “Is this an example of Concept A, Concept B, or something else?” “Give
two different examples of a .” “Explain why does not fit into the
category of .” These questions require you to learn and use the vocabulary
(terms and symbols) of the three subjects.

• factual: “Is it true that every system of linear algebraic equations has a unique
solution?” “What types of random variables can be assumed to be normal (i.e.,
have a normal distribution)?” The facts you need to know sometimes are stated as
theorems, at other times appear just in the reading and/or class lectures; homework
problems alone generally do not prepare students for these questions.

• reflective: “Problems A and B look similar, yet require different methods for solving
them. What key feature(s) make this necessary?” “What assumptions must one

v

make to consider the answer you just obtained (in the previous problem) reliable?
How might one check that these assumptions hold? Just how unreliable is the answer
if they do not?”

In short, students who do well in the course are those who demonstrate a certain amount
of knowledge (albeit at the rudimentary level) in these three subject areas, which includes,
but is not limited to, the ability to carry out various procedures to obtain a correct answer.
While it is no guarantee of success, the course has been designed to reward students who

• do the homework themselves.1

• read and ponder every piece of information thrown at them, trying to formulate a
coherent understanding of the subject at hand into which all of the lecture material,
reading, examples, and homework fit nicely.

• are willing to experiment with the tools they’ve seen, inventing different scenarios
and seeing (most likely with the use of software) the outcomes. Such students
approach exercises with an open mind, an attitude of experimentation that means
their very conceptions of one or more mathematical ideas/processes is on the line,
and ready to surrender up and replace these conceptions with new formulations
when results conflict with prior notions.

• attempt (successfully, at times) to draw broader conclusions that serve to guide them
through settings not necessarily encountered in the examples and homework.

• have assimilated the concepts and vocabulary used by professionals to express the
underlying ideas.

These are not the kinds of activities one can carry out at the last minute; you must commit
to them as daily habits. Learning is not a passive activity, but a life discipline, sometimes
pleasurable, but always demanding your attention. A class full of students that take
this discipline seriously, bringing to class (or to outside meetings with the professor)
questions of all types that arise out of discussions of the previous day (week, month,
etc.), greatly contributes to the overall experience and knowledge of everyone involved.
(Indeed, in such an environment the contribution of the professor greatly surpasses what
he can do on his own, apart from this ‘community-of-learners’ atmosphere.) The opposite
extreme, a class in which students expect to be force-fed material from which they remain
detached/unengaged—where real knowledge is not the goal so much as the ability to appear
knowledgeable—generally leaves a bad taste and minimizes the possibility of lasting
value.

1It is possible to seek out and employ hints from the professor or classmates without compromising this.
To borrow another’s paper and copy down her answer, however, does not contribute in any way to one’s
knowledge, and will be treated as a case of academic dishonesty (on the part of both borrower and borrowee).

vi

And what is the value we seek to acquire from this course? Is it the many useful formu-
las which have been produced through the work of people doing mathematics? Not just
this, certainly. Indeed, not even primarily this, as a college education should comprise
much more than training in the use of formulas. The discipline of mathematics is first and
foremost a manner of thinking—formulating abstract concepts from specific examples,
adapting them when necessary to new settings, drawing a clear line of reasoning from as-
sumptions to conclusions—that tends to produce good problem-solvers of immense worth
to society. To improve one’s ability to think in this fashion is of paramount importance,
the most valuable thing a mathematics course has to offer. At the same time it is a difficult
thing to teach—mathematics professors generally do it either by 1) providing open-ended
questions that force students to formulate their own concepts, while giving feedback and
guidance along the way (a technique that requires lots of time and a great deal of flexibility
concerning how much material will get covered in the course), or 2) modeling this type
of thinking for the class (i.e., explaining the various ties between concepts, explaining
the thoughts in the teacher’s head as he approaches the problem, giving the reasons for
taking one approach as opposed to another, etc.). Time constraints require we employ
this second approach. Know, then, that the heart and soul of the course is wrapped up
not primarily in the examples (though these are an important part of the dialogue), but
rather in the commentary that accompanies them (the commentary during lectures, the
paragraphs in between examples in the text, etc.). Accordingly, give significant hearing to
these between-example commentaries.

vii

Contents

Part I Linear Algebra

1 Solving Linear Systems of Equations 103
1.1 Matrix Algebra . 103
1.2 Matrix Multiplication and Systems of Linear Equations 114

1.2.1 Several interpretations of matrix multiplication . 114
1.2.2 Systems of linear equations . 119

1.3 Affine transformations of R2 . 121
1.4 Gaussian Elimination . 124

1.4.1 Examples of the method . 125
1.4.2 Finding an inverse matrix . 131

1.5 LU Factorization of a Matrix . 132
1.6 Determinants and Eigenpairs . 136

1.6.1 Determinants . 136
1.6.2 Eigenpairs . 137

1.7 Linear Independence and Matrix Rank . 143

2 Vector Spaces 201
2.1 Properties and Examples of Vector Spaces . 201

2.1.1 Properties of Rn . 201
2.1.2 Some non-examples . 203

2.2 Vector Subspaces . 204
2.3 Bases and Dimension . 206

3 Orthogonality and Least-Squares Solutions 301
3.1 Inner Products, Norms, and Orthogonality . 301

3.1.1 Inner products . 301
3.1.2 Orthogonality . 302
3.1.3 Inner product spaces . 305

3.2 The Fundamental Subspaces . 306
3.2.1 Direct Sums . 306
3.2.2 Fundamental subspaces, the normal equations, and least-squares

solutions . 308

ix

Contents

Part II Statistics

4 Data 401
4.1 Data - Basic Notions . 401
4.2 Graphical and Numerical Summaries of Univariate Data 405

4.2.1 Graphical Summaries . 405
4.2.2 Measures of the Center of a Distribution . 408
4.2.3 Measures of Dispersion . 411

4.3 The Relationship Between Two Variables . 415
4.4 Describing a Linear Relationship Between Two Quantitative Variables 419
4.5 Describing a Non-linear Relationship Between Two Variables 429
4.6 Data - Samples . 431
4.7 Data - Experiments . 438
4.8 Exercises . 442

5 Probability 501
5.1 Modelling Uncertainty . 501
5.2 Discrete Random Variables . 506

5.2.1 Random Variables . 506
5.2.2 The Binomial Distribution . 508
5.2.3 The Hypergeometric Distribution . 511

5.3 Continuous Random Variables . 512
5.3.1 pdfs and cdfs . 513
5.3.2 Uniform Distributions . 515
5.3.3 Exponential Distributions . 517
5.3.4 Weibull Distributions . 519

5.4 Mean and Variance of a Random Variable . 521
5.4.1 The Mean of a Discrete Random Variable . 521
5.4.2 The Mean of a Continuous Random Variable . 523
5.4.3 Transformations of Random Variables . 524
5.4.4 The Variance of a Random Variable . 526

5.5 The Normal Distribution . 527
5.6 Exercises . 533

6 Inference 601
6.1 Hypothesis Testing . 601
6.2 Inferences about the Mean . 606
6.3 The t-Distribution . 611
6.4 Inferences for the Difference of Two Means . 615
6.5 Regression Inference . 621
6.6 Exercises . 626

x

Contents

Part III Vector Calculus

7 Vector Calculus 701
7.1 Parametrized Curves and Surfaces . 701

7.1.1 Parametrized curves . 701
7.1.2 Surfaces . 704

7.2 Line Integrals (Outline) . 710
7.3 Vector Fields, Work, Circulation, Flux (Outline) . 710

7.3.1 Vector fields . 710
7.3.2 Line integrals of vector fields . 711

7.4 Path Independence, Potential Functions, and Conservative Fields 711
7.4.1 The del operator . 711
7.4.2 Conservative fields and their line integrals . 712

7.5 Green’s Theorem in the Plane (Outline) . 714
7.5.1 Interpretation of the curl and divergence . 714
7.5.2 Green’s Theorem in the plane . 714

7.6 Surface Integrals and Area (Outline) . 715
7.7 Flux across a Surface (Outline) . 716
7.8 Stokes’ Theorem (Outline) . 717

7.8.1 The result, generalizing Green’s Theorem . 717
7.8.2 The fundamental theorems and their relationships 718

7.9 The Divergence Theorem (Outline) . 719

A Appendix: Introduction to GNU Octave 801
A.1 Basics . 801

A.1.1 What is O? . 801
A.1.2 Help! . 801
A.1.3 Input conventions . 801
A.1.4 Variables and standard operations . 802

A.2 Vector and matrix operations . 803
A.2.1 Vectors . 803
A.2.2 Matrices . 803
A.2.3 Basic matrix arithmetic . 804
A.2.4 Element-wise operations . 805
A.2.5 Indexing and slicing . 805
A.2.6 Solving linear systems of equations . 806
A.2.7 Inverses, decompositions, eigenvalues . 807
A.2.8 Testing for zero elements . 807

A.3 Control structures . 807
A.3.1 Functions . 807

xi

Contents

A.3.2 Loops . 808
A.3.3 Branching . 809
A.3.4 Functions of functions . 809
A.3.5 Efficiency considerations . 810
A.3.6 Input and output . 810

A.4 Graphics . 811
A.4.1 2D graphics . 811
A.4.2 3D graphics: . 812
A.4.3 Commands for 2D and 3D graphics . 813

A.5 Exercises . 813
A.5.1 Linear algebra . 813
A.5.2 Timing . 814
A.5.3 Stability functions of BDF-integrators . 815
A.5.4 3D plot . 816
A.5.5 Hilbert matrix . 816
A.5.6 Least square fit of a straight line . 816
A.5.7 Trapezoidal rule . 817

B Appendix: Using R 819
B.1 Getting Started . 819
B.2 Vectors and Factors . 819
B.3 Data frames . 820
B.4 Getting Data In and Out . 822
B.5 Functions in R . 824
B.6 Samples and Simulation . 825
B.7 Formulas . 827
B.8 Lattice Graphics . 828
B.9 Exercises . 829

C Selected Answers to Exercises 831

xii

Part I

Linear Algebra: Theory and Computation

Foreward to Part I

Linear algebra is likely the most useful mathematical subject that an applied mathematician
or engineer can learn. Most practical problems are both multidimensional and nonlinear,
making them too difficult to solve in any general way. The first attempt to solving such a
problem usually involves approximating it locally by a linearized version, hence bringing
it into the purview of linear algebra.

While the kind of linear algebra problems addressed in the homework for this course
will generally be small enough in size that calculations can be done on paper or with
a modern calculator, many applied problems are several orders of magnitude larger,
requiring calculations to be done using software on a computer. One package often used
for such calculations is M, and an aim in this course is to familiarize you with the
syntax and use of this language. But, while the college has M installed in certain
of its computer laboratories, it is somewhat expensive to purchase your own copy. There
is a GNU-public license package called O which has much of the same command
structure and feel of M. As it is free, powerful in its own right, and available for the
three main platforms (Windows, Macintosh OS-X, and Linux), a number of book examples
will be provided in O. When this is the case, commands will usually be portable to
Mwith few changes required.

While software may free us, in practice, from some technical calculations, it is necessary
that we be aware of the underlying structure. Thus, we spend a good deal of time away
from the computer and calculations, focusing on new concepts and their interconnections
(as provided by theorems).

101

1 Solving Linear Systems of Equations

1.1 Matrix Algebra

Definition 1.1.1. An m-by-n real matrix is a table of m rows and n columns of real numbers.
We say that the matrix has dimensions m-by-n.

The plural of matrix is matrices.

Remarks:

1. Often we write a matrix A = (ai j), indicating that the matrix under consideration
may be referred to as a single unit by the name A, but that one may also refer to the
entry in the ith row, jth column as ai j.

2. If one of the matrix dimensions m or n is equal to 1, it is common to call the table a
vector (or column vector, if n = 1; a row vector if m = 1). Though column vectors are
just special matrices, it is common to use lowercase boldface letters for them (like u,
v, x, etc.), reserving uppercase boldface letters for other types of matrices. When x is
an n-by-1 vector, we often denote its components with singly-subscripted non-bold
letters—x1 for the first component, x2 for the 2nd , and so on.

Practitioners carry out large-scale linear algebraic computations using software, and
in this section we will alternate between discussions of concepts, and demonstrations of
corresponding implementations in the software package O. To create a matrix (or
vector) in O, you enclose elements in square brackets ([and]). Elements on the same
row should be separated only by a space (or a comma). When you wish to start a new
row, you indicate this with a semicolon (;). So, to enter the matrices

[
1 5 −2

]
,

4
−1
3
7

 , and

3 0
−1 5
2 1

 ,
you can type

octave-3.0.0:1> [1 5 -2]

ans =

103

1 Solving Linear Systems of Equations

1 5 -2

octave-3.0.0:2> [4; -1; 3; 7]

ans =

4

-1

3

7

octave-3.0.0:3> A = [3 0; -1 5; 2 1];

In all but the third of these commands, O echoed back to us its understanding of
what we typed. It did not do so for the last command because we ended that command
with a final semicolon. Also, since we preceded our final matrix with “A =”, the resulting
matrix may now be referred to by the letter (variable) A.

Just as writing A = (ai j) gives us license to refer to the element in the 2nd row, 1st column
as a21, storing a matrix in a variable in O gives us an immediate way to refer to
its elements. The entry in the 2nd row, 1st column of the matrix A defined above can be
obtained immediately by

octave-3.0.0:4> A(2,1)

ans = -1

That is, you can pick and choose an element from A by indicating its location in parenthe-
ses.

One can easily extract whole submatrices from A as well. Suppose you want the entire
first row of entries. This you do by specifying the row, but using a colon (:) in place of
specifying the column.

octave-3.0.0:5> A(1,:)

ans =

3 0

Next, suppose we want to get the first and third rows of A. Since we want full rows here,
we continue to use the colon where a column can be specified. We use a vector whose
entries are 1 and 3 to specify which rows.

octave-3.0.0:6> A([1 3],:)

ans =

3 0

2 1

There are some shortcuts in O when creating matrices or vectors with particular
kinds of structure. The colon may be used between numbers as a quick way to create row
vectors whose entries are evenly spaced. For instance, a row vector containing the first
five positive integers is produced by the command

104

1.1 Matrix Algebra

octave-3.0.0:7> 1:5

ans =

1 2 3 4 5

You can also specify a “step” or “meshsize” along the way, as in

octave-3.0.0:8> 1:.5:3

ans =

1.0000 1.5000 2.0000 2.5000 3.0000

One implication of the ability to create vectors in this fashion is that, if we desire the first
two rows of the matrix A above, either of the commands

octave-3.0.0:9> A(1:2, :)

or

octave-3.0.0:10> A([1 2], :)

will do the trick.
Among square matrices (i.e., ones having equal numbers of rows and columns) are

those classified as diagonal matrices. Such a matrix A = (ai j) is one whose entries ai j are
zero whenever i , j. The diag() command makes it easy to construct such a matrix in
O, even providing the ability to place specified entries on a super- or subdiagonal
(i.e., a diagonal that lies above or below the main diagonal). We give here two examples
of the use of diag(). In the first case, the only argument is a vector, whose entries are then
placed on the main diagonal of an appropriately-sized diagonal matrix; in the 2nd case,
the additional argument of (−1) is used to request that the vector of entries be placed on
the first subdiagonal.

octave-3.0.0:7> diag([1 3 -1])

ans =

1 0 0

0 3 0

0 0 -1

octave-3.0.0:8> diag([1 3 -1], -1)

ans =

0 0 0 0

1 0 0 0

0 3 0 0

0 0 -1 0

Other O commands that are helpful in producing certain types of matrices are
zeros(), ones(), eye(), and rand(). You can read the help pages to learn the purpose

105

1 Solving Linear Systems of Equations

and required syntax of these and other O commands by typing

octave-3.0.0:1> help <command name>

at the O prompt. It is perhaps relevant to note that numbers (scalars) themselves are
considered by O to be 1-by-1 matrices.

The title of this section is “Matrix Algebra”. In any algebraic system we must know
what one means by the word equality.

Definition 1.1.2. Two matrices A = (ai j) and B = (bi j) are said to be equal if their dimensions
are equal, and if the entries in every location are equal.

Example 1.1.1
The two vectors [

3 −1 2 5
]

and

3
−1
2
5

cannot be considered equal, since they have different dimensions. While the entries
are the same, the former is a row vector and the latter a column vector.

O has many built-in functions. Users can augment these built-in functions with
functions of their own. Let’s write a function which accepts two matrices and checks
whether they are equal. (Such a function has no practical application, but gives us the
opportunity to illustrate the writing of a function in O, as well as some other language
constructs.)

octave-3.0.0:30> function equalMat(AA, BB)

> sizeAA = size(AA);

> sizeBB = size(BB);

> if (sizeAA(1) ˜= sizeBB(1) || sizeAA(2) ˜= sizeBB(2))

> disp(’These matrices do not have the same dimension.’)

> disp(’They cannot possibly be equal.’)

> elseif (sum(sum(AA ˜= BB)) == 0)

> disp(’The matrices are equal.’)

> else

> disp(’The matrices have the same dimensions, but are not equal.’)

> end

> end

Some notes about what you see in the function above.

106

1.1 Matrix Algebra

• O is case-sensitive.

• The function above, as written, requires two inputs, both matrices. It, however, has
no return value. Appendix A contains examples of functions that do return a value,
but for what this function does, there is no need of one.

• Certain keywords herald the start of a larger construct in O; function and if
are such keywords in the code above. When a larger construct opens, O holds
off on evaluating anything, as exhibited by the lack of another prompt beginning
with the word octave-3.0.0. Only once all constructs have been completed with
appropriate ending keywords will O really do something—in this case, store
the sequence of commands to execute at some later time, when someone types
something like

A = [1 3; 1 1; 0 1];

equalMat([1 5; 2 7; 8 -1], A)

• A single equals sign makes an assignment of a value to a variable. For instance, in
the code above, sizeAA is the name of a variable which holds the value (a vector)
returned by the call to the function size().

When one wishes to test whether two quantities are equal, a double equals (==)
must be used. If, on the other hand, one wants to test whether two values are not
equal, one uses the pair of symbols ∼= (or the pair !=).

• One can store these exact same commands in a text file named equalMat.m. So long
as such a file is in your path (in your working directory, or in some other directory
O knows to look in for commands you’ve written), a call to the equalMat()
function will put this function into action.

In this course, the term vector will be synonomous with column vector. The set of vectors
having n components, all of which are real numbers, will be called Rn, or sometimes
Euclidean n-space. The elements of Rn are n-by-1 matrices, sometimes called n-vectors.
However, as it takes less room out of a page to list the contents of a vector horizontally
rather than vertically, we will often specify an n-vector horizontally using parentheses, as
in

x = (x1, x2, . . . , xn) .

The most fundamental algebraic operations on matrices are as follows:

1. Addition of Two Matrices.

Given two m-by-n matrices A = (ai j) and B = (bi j), we define their sum A + B to be

107

1 Solving Linear Systems of Equations

the m-by-n matrix whose entries are (ai j + bi j). That is,
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

+

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

bm1 bm2 · · · bmn

 :=

a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

...
am1 + bm1 am2 + bm2 · · · amn + bmn

 .
In order to add two matrices, they must have the same number of rows and columns
(i.e., be matrices with the same dimensions). Note that this is not the same as saying
they must be square matrices!

It is simple to add two matrices in O. One possibility is code like

octave-3.0.0:39> A = [3 1 6; 1 2 -1];

octave-3.0.0:40> A + ones(2,3)

ans =

4 2 7

2 3 0

which creates a 2-by-3 matrix A, and then adds to it another 2-by-3 matrix whose
entries are all ones.

2. Multiplication of a Matrix by a Scalar.

Given an m-by-n matrix A = (ai j) and a scalar c, we define the scalar multiple cA to
be the m-by-n matrix whose entries are (cai j). That is,

c

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 :=

ca11 ca12 · · · ca1n
ca21 ca22 · · · ca2n
...

...
...

cam1 cam2 · · · camn

 .
Our definitions for matrix addition and scalar multiplication have numerous impli-
cations. They include the following:

a) Matrix subtraction is merely a combination of matrix addition and scalar multi-
plication by (-1): A − B := A + (−1)B.

b) Distributive laws between matrix addition and scalar multiplication hold:
i. c(A + B) = cA + cB.

ii. (c + d)A = cA + dA.
c) An appopriately-sized matrix whose entries are all zeros serves as an additive

identity (or zero matrix, denoted in boldface by 0). That is, A + 0 = A.
d) Scalar multiplication by 0 produces the zero matrix 0. That is, (0)A = 0.

Scalar multiplication in O is as easy as in the following sample code

108

1.1 Matrix Algebra

octave-3.0.0:47> 3*randn(3,2)

ans =

-4.03239 3.04860

1.67442 2.60456

0.33131 2.31099

which produces a 3-by-2 matrix whose entries are sampled from a normal distri-
bution with mean 0 and standard deviation 1, and then multiplies it by the scalar
3.

3. Multiplication of Two Matrices

When we multiply two matrices, the product is a matrix whose elements arise from
dot products1 between the rows of the first (matrix) factor and columns of the second.
An immediate consequence of this: if A and B are matrices, the product AB makes
sense precisely when the number of columns in A is equal to the number of rows
in B. To be clearer about how such a matrix product is achieved, suppose A is an
m-by-n matrix while B is an n × p matrix. If we write

A =

r1 →

r2 →

...
rm →

 and B =

[
c1 c2 · · · cp
↓ ↓ ↓

]
,

with each of the rows ri of A having n components and likewise each of the columns
cj of B, then their product is an m × p matrix whose entry in the ith -row, jth -column
is obtained by taking the dot product of ri with cj. Thus if

A =

2 −1
0 3
−5 1
7 −4

 and B =

[
3 1 0
−2 4 10

]
,

1The dot product of two vectors is a concept from MATH 162, studied primarily in the case where those
vectors have just two components. It appears as well in elementary physics courses.

109

1 Solving Linear Systems of Equations

then the product AB will be the 4 × 3 matrix

AB =

(2,−1) ·
[

3
−2

]
(2,−1) ·

[
1
4

]
(2,−1) ·

[
0

10

]
(0, 3) ·

[
3
−2

]
(0, 3) ·

[
1
4

]
(0, 3) ·

[
0

10

]
(−5, 1) ·

[
3
−2

]
(−5, 1) ·

[
1
4

]
(−5, 1) ·

[
0

10

]
(7,−4) ·

[
3
−2

]
(7,−4) ·

[
1
4

]
(7,−4) ·

[
0

10

]

=

8 −2 −10
−6 12 30
−17 −1 10
29 −9 −40

 .
Remarks:

• When we write AB, where A, B are appropriately-sized matrices, we will mean
the product of these two matrices using multiplication as defined above. In
O, you must be careful to include the multiplication symbol (since AB is a
valid variable name), as in
octave-3.0.0:53> A = [1 2 3; 4 5 6];

octave-3.0.0:54> B = [2; 3; 1];

octave-3.0.0:55> A*B

ans =

11

29

The manner in which we defined matrix multiplication is the standard (and
most useful) one. Nevertheless, there are times one simply wants to multiply
a bunch of numbers together quickly and efficiently. If those numbers are all
stored in matrices having the same dimensions, O offers a way to carry
this out. It is called componentwise multiplication, and to get O to do it,
we must precede the multiplication symbol with a period (.). That is,[

a b
c d

]
. ∗

[
α β
γ δ

]
=

[
aα bβ
cγ dδ

]
.

In fact, the operations of multiplication, division and exponentiation can be
performed pointwise in O (note that addition and subtraction already are),
when the occasion merits it, by preceding them with a period. The difference
between regular and pointwise exponentiation is illustrated below.

110

1.1 Matrix Algebra

octave-3.0.0:59> A = [3 1; 4 3]

A =

3 1

4 3

octave-3.0.0:60> Aˆ2

ans =

13 6

24 13

octave-3.0.0:61> A.ˆ2

ans =

9 1

16 9

• Notice that, if A is 2-by-4 and B is 4-by-3, then the product AB is defined, but the
product BA is not. This is because the number of columns in B is unequal to the
number of rows in A. Thus, for it to be possible to multiply two matrices, one
of which is m-by-n, in either order, it is necessary that the other be n-by-m. Even
when both products AB and BA are possible, however, matrix multiplication is
not commutative. That is, AB , BA, in general.

• We do have a distributive law for matrix multiplication and addition. In partic-
ular, A(B + C) = AB + AC, for all appropriately-sized matrices A, B, C.

• When an m-by-n matrix A is multiplied by an n-by-1 (column) vector (an n-
vector, for short), the result is an m-vector. That is, for each n-vector v, Av
is an m-vector. It is natural to think of left-multiplication by A as a mapping
(or function) which takes n-vectors v as inputs and produces m-vectors Av
as outputs. Of course, if B is an `-by-m matrix, then one can left-multiply
the product Av by B to get B(Av). The manner in which we defined matrix
products ensures that things can be grouped differently with no change in the
answer—that is, so

(BA)v = B(Av) .

• Notice that the n-by-n matrix

In :=

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

has the property that, whenever C is an n-by-p matrix (so that the product InC
makes sense), it is the case that InC = C. Moreover, if B is an m-by-n matrix, then

111

1 Solving Linear Systems of Equations

BIn = B. Since multiplication by In does not change the matrix (or vector) with
which you started, In is called the n-by-n identity matrix. In most instances, we
will write I instead of In, as the dimensions of I should be clear from context.
In O, the function that returns the n-by-n identity matrix is eye(n). This
explains the result of the commands
octave-3.0.0:73> A = [1 2 3; 2 3 -1]

A =

1 2 3

2 3 -1

octave-3.0.0:74> A*eye(3)

ans =

1 2 3

2 3 -1

• For a square (n-by-n) matrix A, there may be a corresponding n-by-n matrix B
having the property that

AB = BA = In .

If so, the matrix A is said to be nonsingular or invertible, with inverse matrix
B. Usually the inverse of A, when it exists, is denoted by A−1. This relationship
is symmetric, so if B is the inverse of A, then A is the inverse of B as well. If A
is not invertible, it is said to be singular.
The following fact about the product of invertible matrices is easily proved.

Theorem 1.1.3. Suppose A, B are both n-by-n invertible matrices. Then their
product AB is invertible as well, having inverse (AB)−1 = B−1A−1.

When A is invertible, it is not so easy to find A−1 as one might think. With
rounding (and sometimes instability) in the calculations, one cannot, in general,
get a perfect representation of the inverse using a calculator or computer, though
the representation one gets is often good enough. In O one uses the inv()
command.
octave-3.0.0:66> A = [1 2 3; 2 3 -1; 1 0 -2]

A =

1 2 3

2 3 -1

1 0 -2

octave-3.0.0:67> B = inv(A)

B =

0.66667 -0.44444 1.22222

-0.33333 0.55556 -0.77778

112

1.1 Matrix Algebra

0.33333 -0.22222 0.11111

octave-3.0.0:68> B*A

ans =

1.00000 -0.00000 0.00000

0.00000 1.00000 0.00000

0.00000 0.00000 1.00000

4. Transposition of a Matrix

Look closely at the two matrices

A =

1 2 0 −1
−3 −1 1 −1
2 −2 0 1

 and B =

1 −3 2
2 −1 −2
0 1 0
−1 −1 1

for a connection between the two. The matrix B has been formed from A so that
the first column of A became the first row of B, the second column of A became
the 2nd row of B, and so on. (One might say with equal accuracy that the rows of
A became the columns of B, or that the rows/columns of B are the columns/rows
of A.) The operation that produces this matrix B from (given) matrix A is called
transposition, and matrix B is called the transpose of A, denoted as B = AT. (Note:
In some texts the prime symbol is used in place of the T, as in B = A′.)

When you already have a matrix A defined in O, there is a simple command that
produces its transpose. Strictly speaking that command is transpose(). However,
placing an apostrophe (a prime) after the name of the matrix produces the tranpose
as well, so long as the entries in the matrix are all real numbers (i.e., having zero
imaginary parts). That is why the result of the two commands below is the same for
the matrix A on which we use them.

octave-3.0.0:77> A = [1 2 3; 2 3 -1]

A =

1 2 3

2 3 -1

octave-3.0.0:78> transpose(A)

ans =

1 2

2 3

3 -1

octave-3.0.0:79> A’

ans =

113

1 Solving Linear Systems of Equations

1 2

2 3

3 -1

Remarks:

• If A is an m-by-n matrix, then AT is n-by-m.
• Some facts which are easy to prove about matrix transposition are the following:

(i) For all matrices A it is the case that (AT)T
= A.

(ii) Whenever two matrices A and B can be added, it is the case that (A + B)T =
AT + BT.

(iii) Whenever the product AB of two matrices A and B is defined, it is the case
that (AB)T = BTAT.
(Compare this result to Theorem 1.1.3, a similar-looking fact about the
inverse of the product of two invertible matrices.)

(iv) For each invertible matrix A, AT is invertible as well, with (AT)−1 = (A−1)T.
• There are some matrices A for which AT = A. Such matrices are said to be

symmetric.

1.2 Matrix Multiplication and Systems of Linear Equations

1.2.1 Several interpretations of matrix multiplication

In the previous section we saw what is required (in terms of matrix dimensions) in order
to be able to produce the product AB of two matrices A and B, and we saw how to produce
this product. There are several useful ways to conceptualize this product, and in this first
sub-section we will investigate them. We first make a definition.

Definition 1.2.1. Let A1, A2, . . . , Ak be matrices all having the same dimensions. For each
choice of real numbers c1, . . . , ck, we call

c1A1 + c2A2 + · · · + ckAk

a linear combination of the matrices A1, . . . , Ak. The set of all such linear combinations

S := {c1A1 + c2A2 + · · · + ckAk | c1, . . . , ck ∈ R}

is called the linear span (or simply span) of the matrices A1, . . . , Ak. We sometimes write
S = span({A1, . . . ,Ak}).

114

1.2 Matrix Multiplication and Systems of Linear Equations

Here, now, are several different ways to think about product AB of two appropriately
sized matrices A and B.

1. Block multiplication. This is the first of four descriptions of matrix multiplication,
and it is the most general. In fact, each of the three that follow is a special case of
this one.

Any matrix (table) may be separated into blocks (or submatrices) via horizontal and
vertical lines. We first investigate the meaning of matrix multiplication at the block
level when the left-hand factor of the matrix product AB has been subdivided using
only vertical lines, while the right-hand factor has correspondingly been blocked
using only horizontal lines.

Example 1.2.1

Suppose

A =

8 8 3 −4 5
6 −6 1 −8 6
5 3 4 2 7

 =
[

A1 A2 A3
]

(Note how we have named the three blocks found in A!), and

B =

−3 5 −5 −2
2 −2 2 −7
−6 6 0 3
−3 2 −5 0
0 −1 −1 4

 =

B1
B2

B3

 .
Then

AB = A1B1 + A2B2 + A3B3

=

8 8
6 −6
5 3

[
−3 5 −5 −2
2 −2 2 −7

]
+

3
1
4

 [−6 6 0 3
]

+

−4 5
−8 6
2 7

[
−3 2 −5 0
0 −1 −1 4

]

=

−8 24 −24 −72
−30 42 −42 30
−9 19 −19 −31

 +

−18 18 0 9
−6 6 0 3
−24 24 0 12

 +

12 −13 15 20
24 −22 34 24
−6 −3 −17 28

=

−14 29 −9 −43
−12 26 −8 57
−39 40 −36 9

 .

While we were trying to keep things simple in the previous example by drawing only
vertical lines in A, the number and locations of those vertical lines was somewhat

115

1 Solving Linear Systems of Equations

arbitrary. Once we chose how to subdivide A, however, the horizontal lines in B had
to be drawn to create blocks with rows as numerous as the columns in the blocks of
A.

Now, suppose we subdivide the left factor with both horizontal and vertical lines.
Say that

A =

A11 A12
A21 A22

A31 A32

 .
Where the vertical line is drawn in A continues to dictate where a horizontal line
must be drawn in the right-hand factor B. On the other hand, if we draw any vertical
lines in to create blocks in the right-hand factor B, they can go anywhere, paying no
heed to where the horizontal lines appear in A. Say that

B =

[
B11 B12 B13 B14
B21 B22 B23 B24

]
.

Then

AB =

A11 A12
A21 A22

A31 A32

[

B11 B12 B13 B14
B21 B22 B23 B24

]

=

A11B11 + A12B21 A11B12 + A12B22 A11B13 + A12B23 A11B14 + A12B24
A21B11 + A22B21 A21B12 + A22B22 A21B13 + A22B23 A21B14 + A22B24
A31B11 + A32B21 A31B12 + A32B22 A31B13 + A32B23 A31B14 + A32B24

 .
Example 1.2.2

Suppose A, B are the same as in Example 1.2.1. Let’s subdivide A in the following
(arbitrarily chosen) fashion:

A =

8 8 3 −4 5
6 −6 1 −8 6
5 3 4 2 7

 =

[
A11 A12
A21 A22

]
.

Given the position of the vertical divider in A, we must place a horizontal
divider in B as shown below. Without any requirements on where vertical
dividers appear, we choose (again arbitrarily) not to have any.

B =

−3 5 −5 −2
2 −2 2 −7
−6 6 0 3
−3 2 −5 0
0 −1 −1 4

 =

[
B1
B2

]
.

116

1.2 Matrix Multiplication and Systems of Linear Equations

Then

AB =

[
A11B1 + A12B2

A21B1 + A22B2

]

=

[
8 8 3 −4

]
−3 5 −5 −2
2 −2 2 −7
−6 6 0 3
−3 2 −5 0

 + 5
[

0 −1 −1 4
]

[
6 −6 1 −8
5 3 4 2

]
−3 5 −5 −2
2 −2 2 −7
−6 6 0 3
−3 2 −5 0

 +

[
6
7

] [
0 −1 −1 4

]

=

−14 29 −9 −43
−12 26 −8 57
−39 40 −36 9

 .

2. Sums of rank-one matrices. Now let us suppose that A has n columns and B has
n rows. Suppose also that we block (as described in the simpler case above) A by
column—one column per block—and correspondingly B by row:

A =
[

A1 A2 · · · An
]

and B =

B1
B2
...

Bn

 .
Following Example 1.2.1, we get

AB = A1B1 + A2B2 + · · · + AnBn =

n∑
j=1

A jB j . (1.1)

The only thing new here to say concerns the individual products A jB j themselves,
in which the first factor A j is a vector inRm and the 2nd B j is the transpose of a vector
in Rp (for some m and p).

So, take u ∈ Rm and v ∈ Rp. Since u is m-by-1 and vT is 1-by-p, the product uvT,
called the outer product of u and v, makes sense, yielding an m-by-p matrix.

117

1 Solving Linear Systems of Equations

Example 1.2.3

Given u = (−1, 2, 1) and v = (3, 1,−1, 4), their vector outer product is

uvT =

−1
2
1

 [3 1 −1 4
]

=

−3 −1 1 −4
6 2 −2 8
3 1 −1 4

 .

If you look carefully at the resulting outer product in the previous example, you
will notice it has relatively simple structure—its 2nd through 4th columns are simply
scalar multiples of the first, and the same may be said about the 2nd and 3rd rows in
relation to the 1st row. Later in these notes, we will define the concept of the rank
of a matrix. Vector outer products are always matrices of rank 1 and thus, by (1.1),
every matrix product can be broken into the sum of rank-one matrices.

3. Linear combinations of columns of A. Suppose B has p columns, and we partition
it in this fashion (Notice that B j represents the jth column of B instead of the jth row,
as it meant above!):

B =
[

B1 B2 · · · Bp
]
.

This partitioning by vertical lines of the right-hand factor in the matrix product AB
does not place any constraints on how A is partitioned, and so we may write

AB = A
[

B1 B2 · · · Bp
]

=
[

AB1 AB2 · · · ABp
]
.

That is, for each j = 1, 2, . . . , p, the jth column of AB is obtained by left-multiplying
the jth column of B by A.

Having made that observation, let us consider more carefully what happens when
A—suppose it has n columns A1, A2, . . . , An—multiplies a vector v ∈ Rn. (Note that
each B j is just such a vector.) Blocking A by columns, we have

Av =
[

A1 A2 · · · An
]

v1
v2
...

vn

 = v1A1 + v2A2 + · · · + vnAn.

That is, the matrix-vector product Av is simply a linear combination of the columns
of A, with the scalars multiplying these columns taken (in order, from top to bottom)
from v. The implication for the matrix product AB is that each of its columns AB j is a
linear combination of the columns of A, with coefficients taken from the jth column
of B.

118

1.2 Matrix Multiplication and Systems of Linear Equations

4. Linear combinations of rows of B. In the previous interpretation of matrix multi-
plication, we begin with a partitioning of B via vertical lines. If, instead, we begin
with a partitioning of A, a matrix with m rows, via horizontal lines, we get

AB =

A1
A2
...

Am

 B =

A1B
A2B
...

AmB

 .
That is, the jth row of the matrix product AB is obtained from left-multiplying the
entire matrix B by the jth row (considered as a submatrix) of A.

If A has n columns, then each A j is a 1-by-n matrix. The effect of multiplying a 1-by-n
matrix V by an n-by-p matrix B, using a blocking-by-row scheme for B, is

VB =
[

v1 v2 · · · vn
]

B1
B2

· · ·

Bn

 = v1B1 + v2B2 + · · · + vnBn ,

a linear combination of the rows of B. Thus, for each j = 1, . . . ,m, the jth row A jB
of the matrix product AB is a linear combination of the rows of B, with coefficients
taken from the jth row of A.

1.2.2 Systems of linear equations

Motivated by Viewpoint 3 concerning matrix multiplication—in particular, that

Ax = x1A1 + x2A2 + · · · + xnAn ,

where A1, . . . , An are the columns of a matrix A and x = (x1, . . . , xn) ∈ Rn—we make the
following definition.

Definition 1.2.2. Suppose A =
[

A1 A2 · · · An
]
, where each submatrix A j consists of

a single column (so A has n columns in all). The set of all possible linear combinations of
these columns (also known as span({A1, . . . ,An}))

{c1A1 + c2A2 + · · · + cnAn | c1, c2, . . . , cn ∈ R} ,

is called the column space of A. We use the symbol ran(A) to denote the column space.

119

1 Solving Linear Systems of Equations

The most common problem in linear algebra (and the one we seek in this course to
understand most completely) is the one of solving m linear equations

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2

...
...

am1x1 + am2x2 + . . . + amnxn = bm

(1.2)

in the n unknowns x1, . . . , xn. If one uses the coefficients and unknowns to build a
coefficient matrix and vectors

A =

a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

am1 am2 · · · amn

 , x =

x1
x2
...

xn

 and b =

b1
b2
...

bn

 ,
then by our definitions of matrix equality and multiplication, the system (1.2) may be
expressed more concisely as the matrix equation

Ax = b , (1.3)

where the vector b is known and x is to be found. Given Viewpoint 3 for conceptualizing
matrix multiplication above, problem (1.3) really presents two questions to be answered:

(I) Is b in the column space of A (i.e., is (1.3) solvable)?

(II) If it is, then what are the possible n-tuples x = (x1, . . . , xn) of coefficients so that the
linear combination

x1A1 + x2A2 + · · · + xnAn

of the columns of A equals b?

When the number m of equations and the number n of unknowns in system (1.2) are
equal, it is often the case that there is one unique answer for each of the variables xi (or,
equivalently, one unique vector x satisfying (1.3). Our main goal in the linear algebra
component of this course is to understand completely when (1.3) is and is not solvable,
how to characterize solutions when it is, and what to do when it is not.

One special instance of the case m = n is when A is nonsingular. In this case, if A−1 is
known, then the answer to question (I) is an immediate “yes”. Moreover, one may obtain
the (unique) solution of (1.3) (thus answering question (II)) via left-multiplication by A−1:

Ax = b ⇒ A−1Ax = A−1b
⇒ Ix = A−1b
⇒ x = A−1b .

120

1.3 Affine transformations of R2

Important Note: It is never valid to talk about dividing by a matrix (so not by a
vector either)! One speaks, instead, of multiplying by the inverse matrix, when
that exists. It is, moreover, extremely important to pay attention to which side
of an expression you wish to multiply by that inverse. Often placing it on the
wrong side yields a nonsensical mathematical expression!

In practical settings, however, A−1 must first be found (if, indeed, it exists!) before we can
use it to solve the matrix problem. Despite the availability of the O function inv(),
finding the inverse of a matrix is a very inefficient thing to do computationally, and quite
impossible when A−1 does not exist. In the Section 1.4 we will look at Gaussian elimination
as a procedure for solving linear systems of equations. Gaussian elimination serves as a
foundation for the LU-factorization, which supplies us with a comprehensive method for
solving Ax = b whenever the matrix problem can be solved (even in cases where A−1 does
not exist).

1.3 Affine transformations of R2

Suppose A is an m-by-n matrix. When we left-multiply a vector v ∈ Rn by such a matrix
A, the result is a vector Av ∈ Rm. In this section we will focus upon functions which take
inputs v ∈ Rn and produces outputs Av ∈ Rm. A function such as this could be given
a name, but we will generally avoid doing so, referring to it as “the function v 7→ Av”.
When we wish to be explicit about the type of objects the input and output are, we might
write “(v 7→ Av) : Rn

→ Rm”, which points out that the function v 7→ Av maps objects
from Rn (inputs) to objects from Rm (outputs). But if the reader is informed that A is an
m-by-n matrix, he should already be aware that inputs/outputs to and from the function
v 7→ Av are in Rn and Rm respectively.

In this subsection A will be understood to be a 2-by-2 matrix. Assuming this, it is the
case that (v 7→ Av) : R2

→ R2. We wish to focus our attention on the action of such a
function on the entire plane of vectors for various types of 2-by-2 matrices A.

1. Rotations of the plane. Our first special family of matrices are those of the form

A =

[
cosα − sinα
sinα cosα

]
, (1.4)

forα ∈ R. We know that points in the plane may be specified using polar coordinates,
so any vector v ∈ R2 may be expressed as v = (r cosθ, r sinθ), where (r, θ) is a polar
representation of the terminal point of v. To the see the action of A on a typical v,

121

1 Solving Linear Systems of Equations

note that

Av =

[
cosα − sinα
sinα cosα

] [
r cosθ
r sinθ

]
= r

[
cosα cosθ − sinα sinθ
sinα cosθ + cosα sinθ

]

=

[
r cos(α + θ)
r sin(α + θ)

]
.

where we have employed several angle sum formulas2 in the last equality. That
is, for an input vector v with terminal point (r, θ), the output Av is a vector with
terminal point (r, α + θ). The output is the same distance r from the origin as the
input, but has been rotated about the origin through an angle α. Thus, for matrices
of the form (1.4), the function v 7→ Av rotates the entire plane counterclockwise (for
positive α) about the origin through an angle α. Of course, the inverse matrix would
reverse this process, and hence it must be

A−1 =

[
cos(−α) − sin(−α)
sin(−α) cos(−α)

]
=

[
cos(α) sin(α)
− sin(α) cos(α)

]
.

2. Reflections across a line containing the origin.

First notice that, when

A =

[
1 0
0 −1

]
, then Av =

[
1 0
0 −1

] [
v1
v2

]
=

[
v1
−v2

]
.

Thus, for this special matrix A, v 7→ Av maps points in the plane to their reflections
through the x-axis.

Now let u = (cosθ, sinθ) (i.e., u is a unit vector). Every line in the plane containing
the origin may be expressed as a one-parameter family L = {tu | t ∈ R} of multiples
of u where θ has been chosen (fixed, hence fixing u as well) to be an angle the line
makes with the positive x-axis. (Said another way, each line inR2 containing 0 is the
linear span of some unit vector.) We can see reflections across the line L as a series of
three transformations:

i) rotation of the entire plane through an angle (−θ), so as to make the line L
correspond to the x-axis,

ii) reflection across the x-axis, and then
iii) rotation of the plane through an angle θ, so that the x-axis is returned back to

its original position as the line L.

2These trigonometric identities appear, for instance, in the box marked equation (4) on p. 26 of University
Calculus, by Hass, Weir and Thomas.

122

1.3 Affine transformations of R2

These three steps may be affected through successive multiplications of matrices (the
ones on the left below) which can be combined into one:[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
1 0
0 −1

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
=

[
cosα sinα
sinα − cosα

]
, (1.5)

where α = 2θ. That is, a matrix of the form

A =

[
cosα sinα
sinα − cosα

]
(1.6)

will map points in the plane to their mirror images across a line that makes an angle
(α/2) with the positive x-axis.

3. Scaling relative to the origin: perpendicular lines case. Suppose we wish to rescale
vectors so that the x-coordinate of terminal points is multiplied by the quantity s,
while the y-coordinates are multiplied by t. It is easy to see that multiplication by
the matrix [

s 0
0 t

]
(1.7)

would achieve this, since [
s 0
0 t

] [
v1
v2

]
=

[
sv1
tv2

]
.

It is, in fact, only slightly more complicated to do this in directions specified by any
pair of perpendicular lines, not just the x- and y-axes. It is left as an exercise to figure
out how.

4. Translations of the plane. What we have in mind here is, for some given vector
w, to translate every vector v ∈ R2 to the new location v + w. It is an easy enough
mapping, described simply in symbols by (v 7→ v + w). Yet, perhaps surprisingly,
it is the one type of affine transformation (most affine transformations of the plane
are either of the type 1–4 described here, or combinations of these) which cannot be
achieved through left-multiplication by a 2-by-2 matrix. That is, for a given w , 0
in R2, there is no 2-by-2 matrix A such that Av = v + w.

When this observation became apparent to computer programmers writing routines
for motion in computer graphics, mathematicians working in the area of projective
geometry had a ready answer: homogeneous coordinates. The idea is to embed
vectors from R2 into R3. A vector v = (v1, v2) ∈ R2 is associated with the vector
ṽ = (v1, v2, 1) which lies on the plane z = 1 inR3. Say we want to translate all vectors
v ∈ R2 by the (given) vector w = (a, b). We can form the 3-by-3 matrix

A =

1 0 a
0 1 b
0 0 1

123

1 Solving Linear Systems of Equations

and multiply ṽ (not v itself) by A. Then the translated vector v + w is obtained from
Aṽ by keeping just the first two coordinates.

We finish this section with two comments. First, we note that even though we needed
homogeneous coordinates only for the translations described in 4 above, it is possible to
carry out the transformations of 1–3 while in homogeneous coordinates as well. This is
possible because we may achieve the appropriate analog of any of the transformations 1–3
by multiplying ṽ by a 3-by-3 block matrix

B =

[
A 0
0 1

]
,

where A is a 2-by-2 block as described in 1–3 above. You should convince yourself, review-
ing what we have said about multiplying matrices in blocks (Viewpoint 1 in Section 1.2) as
needed, that, if ṽ is the homogeneous coordinates version of v, then Bṽ is the homogeneous
coordinates version of Av.

The other note to mention is that, while our discussion has been entirely about affine
transformations on R2, all of the types we have discussed in 1–4 have counterpart trans-
formations on Rn, when n > 2. For instance, if you take a plane in R3 containing the
origin and affix to it an axis of rotation passing perpendicularly to that plane through the
origin then, for a given angle α, there is a 3-by-3 matrix A such that rotations of points in
R3 through the angle α about this axis are achieved via the function (v 7→ Av) : R3

→ R3.
The 3D analogs of transformations 2–3 may be similarly achieved via multiplication by
an appropriate 3-by-3 matrix. Only transformation 4 cannot, requiring, as before, that we
pass into one higher dimension (homogeneous coordinates for R3) and multiply by an
appropriate 4-by-4 matrix.

1.4 Gaussian Elimination

We have noted that linear systems of (algebraic) equations are representable in matrix
form. We now investigate the solution of such systems. You have, now doubt, spent a
fair amount of time in previous courses (MATH 231, most recently) learning how to do
this, and it is hoped that at least some portion of this section is review. We begin with a
definition.

Definition 1.4.1. An m-by-n matrix A = (ai j) is said to be upper triangular if ai j = 0
whenever i > j—that is, when all entries below the main diagonal are zero. When all
entries above the main diagonal are zero (i.e., ai j = 0 whenever i < j), the A is said to
be lower triangular. A square matrix that is both upper and lower triangular is called a
diagonal matrix.

124

1.4 Gaussian Elimination

The system of linear equations

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

has two equations in two unknowns. The variables x1 and x2 represent potential degrees
of freedom, while the equations represent contraints. The solution(s) are points of in-
tersection between two lines, and as such there may be none, precisely one, or infinitely
many.

In real settings, there are usually far more than two variables and equations, and the
apparent number of constraints need not be the same as the number of variables. We
would like a general algorithm which finds solutions to such systems of equations when
solutions exist. We will develop a method called Gaussian elimination and, in the process,
look at examples of various types of scenarios which may arise.

1.4.1 Examples of the method

Example 1.4.1
We begin simply, with a system of 2 equations in 2 unknowns. Suppose we wish to
solve

7x + 3y = 1
3y = −6 or Ax = b , with A =

[
7 3
0 3

]
and b =

[
1
−6

]
.

The problem is very easy to solve using backward substitution—that is, solving the
equation in y alone,

3y = −6 ⇒ y = −2 ,

which makes the appearence of y in the other equation no problem:

7x + 3(−2) = 1 ⇒ x =
1
7

(1 + 6) = 1 .

We have the unique solution (1,−2). Notice that we can solve by backward substitution
because the coefficient matrix A is upper triangular.

Example 1.4.2
The system

2x − 3y = 7
3x + 5y = 1 or, in matrix form

[
2 −3
3 5

] [
x
y

]
=

[
7
1

]
,

is only mildly more difficult, though we cannot immediately resort to backward
substitution as in the last example. Let us proceed by making this problem like that

125

1 Solving Linear Systems of Equations

from the previous example. Perhaps we might leave the top equation alone, but alter
the bottom one by adding (−2/3) multiples of the top equation to it. In what follows,
we will employ the approach of listing the algebraic equations on the left along with a
matrix form of them on the right. Instead of repeating the full matrix equation, we will
abbreviate it with a matrix called an augmented matrix that lists only the constants in
the problem. By adding (−3/2) copies of the top equation to the bottom, our original
system

2x − 3y = 7
3x + 5y = 1 or

[
2 −3 7
3 5 1

]
,

becomes
2x − 3y = 7
(19/2)y = −19/2 or

[
2 −3 7
0 19/2 −19/2

]
.

Now, as the (new) coefficient matrix (the part of the matrix lying to the left of the
dividing line) is upper triangular, we may finish solving our system using backward
substitution:

19
2

y = −
19
2

⇒ y = −1 ,

so
2x − 3(−1) = 7 ⇒ x = 7 + 3 = 10 .

Again, we have a unique solution, the point (10,−1).

Let’s pause for some observations. Hopefully it is clear that an upper triangular system
is desirable so that backward substitution may be employed to find appropriate values
for the variables. When we did not immediately have that in Example 1.4.2, we added a
multiple of the first equation to the second to make it so. This is listed below as number 3
of the elementary operations which are allowed when carrying out Gaussian elimination,
the formal name given to the process of reducing a system of linear equations to a special
form which is then easily solved by substitution. Your intuition about solving equations
should readily confirm the validity of the other two elementary operations.

Elementary Operations of Gaussian Elimination

1. Multiply a row by a nonzero constant.

2. Exchange two rows.

3. Add a multiple of one row to another.

And what is this special form at which Gaussian elimination aims? It is an upper triangular
form, yet not merely that. It is is a special form known as echelon form where the

126

1.4 Gaussian Elimination

first nonzero entries in each row, below depicted by ‘p’s and asterisks, have a stair-step
appearance to them:

p ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·

0 p ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·

0 0 0 p ∗ ∗ ∗ ∗ ∗ · · ·

0 0 0 0 p ∗ ∗ ∗ ∗ · · ·

0 0 0 0 0 0 0 p ∗ · · ·

...

In fact, there may also be zeros where the asterisks appear. The ‘p’s, however, called pivots,
play a special role in the backward substitution part of the solution process, a role that
requires them to be nonzero. If you look back at the pivots in our first two examples (the
numbers 7 and 3 in Example 1.4.1; 2 and (19/2) in Example 1.4.2), you will see why they
must be nonzero—when we get to the backward substitution stage, we divide through by
these pivots. But, as the echelon form above depicts, the number of rows and columns of
a matrix does not tell you just how many pivots you will have. The pivot in one row may
be followed by a pivot in the next row (progressing downward) which is just one column
to the right; but, that next pivot down may also skip several columns to the right. The
final pivot may not even be in the right-most column. One thing for sure is that the pivots
must progress to the right as we move down the rows; all entries below each pivot must
be zero.

It is usually necessary to perform a sequence of elementary row operations on a given
matrix A before arriving at an echelon form R (another m-by-n matrix). It would violate
our definition of matrix equality to call A and R “equal”. Instead, we might say that R is
an echelon form for A (not “the” echelon form for A, as there is more than one), or that A
and R are row equivalent.

We turn now to examples of the process for larger systems, illustrating some different
scenarios in the process, and some different types of problems we might solve using it.
After stating the original problem, we will carry out the steps depicting only augmented
matrices. Since the various augmented matrices are not equal to their predecessors (in the
sense of matrix equality), but do represent equivalent systems of equations (i.e., systems
of equations which have precisely the same solutions), we will separate them with the ∼
symbol.

Example 1.4.3

Find all solutions to the linear system of equations

2x + y − z = 3 ,
4x + 2y + z = 9 .

As these two equations both represent planes in 3-dimensional space, one imagines
that there may either be no solutions, or infinitely many. We perform Gaussian

127

1 Solving Linear Systems of Equations

elimination: [
2 1 −1
4 2 1

∣∣∣∣∣ 3
9

]
−2r1 + r2 → r2

∼

[
2 1 −1
0 0 3

∣∣∣∣∣ 3
3

]
The latter matrix is in echelon form. It has pivots, 2 in the 1st column and 3 in the
3rd column. Unlike previous examples, these pivots are separated by a column which
has no pivot. This 2nd column continues to correspond to y-terms in the system, and
the absence of a pivot in this column means that y is a free variable. It has no special
value, providing a degree of freedom within solutions of the system. The pivot
columns (i.e., the ones with pivots), correspond to the x- and z-terms in the system—
the pivot variables; their values are either fixed, or contingent on the value(s) chosen
for the free variable(s). The echelon form corresponds to the system of equations
(equivalent to our original system)

2x + y − z = 3 ,
3z = 3 .

Clearly, the latter of these equations implies z = 1. Since y is free, we do not expect to
be able to solve for it. Nevertheless, if we plug in our value for z, we may solve for x
in terms of the free variable y:

x =
1
2
(
3 + 1 − y

)
= 2 −

1
2

y .

Thus, our solutions (there are infinitely many) are

(x, y, z) = (2 − y/2, y, 1) = (2, 0, 1) + t(−1, 2, 0) ,

where t = y/2 may be any real number (since y may be any real number). Note that
this set S of solutions traces out a line in 3D space.

Before the next example, we make another definition.

Definition 1.4.2. The nullspace of an m-by-n matrix A consists of those vectors x ∈ Rn for
which Ax = 0. That is,

null(A) := {x ∈ Rn
|Ax = 0} .

A related problem to the one in the last example is the following one.

Example 1.4.4
Find the nullspace of the matrix

A =

[
2 1 −1
4 2 1

]
.

128

1.4 Gaussian Elimination

That is, we are asked to find those vectors v ∈ R3 for which Av = 0 or, to put it in a
way students in a high school algebra class might understand, to solve

2x + y − z = 0 ,
4x + 2y + z = 0 .

Mimicking our work above, we have[
2 1 −1
4 2 1

∣∣∣∣∣ 0
0

]
−2r1 + r2 → r2

∼

[
2 1 −1
0 0 3

∣∣∣∣∣ 0
0

]
,

which corresponds to the system of equations

2x + y − z = 0 ,
3z = 0 .

Now, we have z = 0; y is again a free variable, so x = −1
2 y. Thus, our solutions (again

infinitely many) are
(x, y, z) = (−y/2, y, 0) = t(−1, 2, 0) ,

where t = y/2 may be any real number (since y may be any real number). Note that,
like the solutions in Example 1.4.3, this set of solutions—all scalar multiples of the
vector (−1, 2, 0)—traces out a line. This line is parallel to that of the previous example,
but unlike the other, it passes through origin (or zero vector).

Compare the original systems of equations and corresponding solutions of Exam-
ples 1.4.3 and 1.4.4. Employing language introduced in MATH 231, the system of equations
in Example 1.4.4 is said to be homogeneous as its right-hand side is the zero vector. Its
solutions form a line through the origin, a line parametrized by t. Since the vector on
the right-hand side of Example 1.4.3 is (9, 3) (not the zero vector), that system is nonho-
mogeneous. Its solutions form a line as well, parallel to the line for the corresponding
homogeneous system of Example 1.4.4, but translated away from the origin by the vector
(2, 0, 1) which, itself, is a solution of the nonhomogeneous system of Example 1.4.3. This
same thing happens in the solution of linear ODEs: when faced with a nonhomogeneous
nth -order ODE (just an ODE to solve, not an initial-value problem), one finds the general
solution of the corresponding homogeneous problem, an n-parameter family of solutions,
and then adds to it a particular solution of the nonhomogenous problem.

We finish with an example of describing the column space of a matrix.

Example 1.4.5
Find the column (or range) space of the matrix

A =

2 3 0 −1
1 0 3 1
−3 −5 1 2
1 0 3 1

 .

129

1 Solving Linear Systems of Equations

A quick description of the column space of A is to say it is

span({(2, 1,−3, 1), (3, 0,−5, 0), (0, 3, 1, 3), (−1, 1, 2, 1)}) .

Since that is so easy, let’s see if we can give a more minimal answer. After all, there
may be redundancy in these columns.

Our plan of attack will be to assume that b = (b1, b2, b3, b4) is in ran(A) and solve
Ax = b via elimination as before. We have

2 3 0 −1
1 0 3 1
−3 −5 1 2
1 0 3 1

∣∣∣∣∣∣∣∣∣∣∣
b1
b2
b3
b4

 r1 ↔ r2
∼

1 0 3 1
2 3 0 −1
−3 −5 1 2
1 0 3 1

∣∣∣∣∣∣∣∣∣∣∣
b2
b1
b3
b4

r2 − 2r1 → r2
3r1 + r3 → r3

∼

r4 − r1 → r4

1 0 3 1
0 3 −6 −3
0 −5 10 5
0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣
b2

b1 − 2b2
3b2 + b3
b4 − b2

(5/3)r2 + r3 → r3

∼

1 0 3 1
0 3 −6 −3
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣
b2

b1 − 2b2
(5/3)b1 − (1/3)b2 + b3

b4 − b2

 .
For determining the range space, we focus on the last two rows which say

0x1 + 0x2 + 0x3 + 0x4 =
5
3

b1 −
1
3

b2 + b3 or 0 = 5b1 − b2 + 3b3 ,

and
0 = b4 − b2 .

These are the constraints which must be met by the components of b in order to be in
ran(A). There are two constraints on four components, so two of those components
are “free”. We choose b4 = t, which means b2 = t as well. Thus

b1 =
1
5

(t − 3b3) .

If we take b3 = −5s − 3t, then b1 = 2t + 3s. (Admittedly, this is a strange choice for
b3. However, even if t is fixed on some value, the appearance of the new parameter s
makes it possible for b3 to take on any value.) So, we have that any b ∈ ran(A) must
take the form

b =

2t + 3s

t
−3t − 5s

t

 = t

2
1
−3
1

 + s

3
0
−5
0

 ,

130

1.4 Gaussian Elimination

where s, t are arbitrary real numbers. That is,

ran(A) = span({(2, 1,−3, 1), (3, 0,−5, 0)}) .

When we look back at the original matrix, these two vectors in the spanning set
for ran(A) are precisely the first two columns of A. Thus, while we knew before we
started that ran(A) was spanned by the columns of A, we now know just the first two
columns suffice.

We will return to this problem of finding ran(A) in the next chapter, in which we
will see there is an easier way to determine a set of vectors that spans the column
space.

1.4.2 Finding an inverse matrix

What would you do if you had to solve

Ax = b1 and Ax = b2 ,

where the matrix A is the same but b1 , b2? Of course, one answer is to augment the
matrix A with the first right-hand side vector b1 and solve using Gaussian elimination.
Then, repeat the process with b2 in place of b1. But a close inspection of the process shows
that the row operations you perform on the augmented matrix to reach row echelon form
are dictated by the entries of A, independent of the right-hand side. Thus, one could
carry out the two-step process we described more efficiently if one augmented A with
two extra columns, b1 and b2. That is, working with the augmented matrix [A|b1 b2], use
elementary (row) operations 1.–3. until the part to the left of the augmentation bar is in
row echelon form. This reduced augmented matrix would take the form [R|c1 c2], where
R is a row echelon form. Then we could use backward substitution separately on [R|c1]
and [R|c2] to find solutions to the two matrix problems. Of course, if you have more than
2 matrix problems (with the same coefficient matrix), you tack on more than 2 columns.

This idea is key to findin the inverse of an n-by-n matrix A, when it exists. Let us denote
the standard vectors inRn by e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1). These
are the columns of the identity matrix. We know the inverse B satisfies

AB =

[
e1 e2 e3 · · · en
↓ ↓ ↓ ↓

]
.

Let b1, b2, . . . , bn denote the columns of B. Then an equivalent problem to finding the
matrix B is to solve the n problems

Ab1 = e1 , Ab2 = e2 , . . . Abn = en ,

131

1 Solving Linear Systems of Equations

for the unknown vectors b1, . . . , bn. By the method above, we would augment A with the
full n-by-n identity matrix and perform elementary operations until the part to the left of
the augmentation line was in row echelon form. That is, we would reduce [A|I] to [R|C],
where C is an n-by-n matrix. (Note that if R does not have n pivots, then A is singular.)
We can then solve each of the problems

Rb1 = c1, Rb2 = c2, . . . Rbn = cn

using backward substitution, and arrive at the inverse matrix B putting the solutions
together:

B =

[
b1 b2 · · · bn
↓ ↓ ↓

]
.

That’s a clever method, and it’s pretty much along the lines of how an inverse matrix is
found when it is really desired. However, in most cases, A−1 is just an intermediate find
on the way to solving a matrix problem Ax = b for x. If there is a more efficient way to
find x, one requiring fewer calculations, we would employ it instead. That is the content
of the next section.

1.5 LU Factorization of a Matrix

We have three ‘legal’ elementary operations when using Gaussian elimination to solve the
equation Ax = b. We seek to put the matrix A in echelon form via a sequence of operations
consisting of

1. multiplying a row by a nonzero constant.

2. exchanging two rows.

3. adding a multiple of one row to another.

You may have noticed that, at least in theory, reduction to echelon form may be accom-
plished without ever employing operation 1. Let us focus on operation 3 for the moment.
In practice the multiplier is always some nonzero constant β. Moreover, in Gaussian elim-
ination we are always adding a multiple of a row to some other row which is below it. For
a fixed β, let Ei j be the matrix that only differs from the m-by-m identity matrix in that its
(i, j)th entry is β. We call Ei j an elementary matrix. A user-defined function written in
O code that returns such a matrix might look like the following:

function emat = elementary(m, i, j, val)

emat = eye(m,m);

emat(i,j) = val;

endfn

132

1.5 LU Factorization of a Matrix

In Exercise 1.35 you are asked to show that

Ei jA =

a1,1 a1,2 · · · a1,n
...

...
...

ai−1,1 ai−1,2 · · · ai−1,n
ai,1 + βa j,1 ai,2 + βa j,2 · · · ai,n + βa j,n

ai+1,1 ai+1,2 · · · ai+1,n
...

...
...

am,1 am,2 · · · am,n

.

In other words, pre-multiplication by Ei j performs an instance of operation 3 on the matrix
A, replacing row i with (row i) +β (row j). Now, suppose a1,1 , 0. If we now denote Ei1
by Ei1(β) (in order to make explicit the value being inserted at the (i, 1)th position), then
E21(−a2,1/a1,1)A is a matrix whose entry in its (2, 1)th position has been made to be zero.
More generally,

En1

(
−an,1

a1,1

)
· · ·E3,1

(
−a3,1

a1,1

)
E2,1

(
−a2,1

a1,1

)
A

is the matrix that results from retaining the first pivot of A and eliminating all entries
below it. If our matrix A is such that no row exchanges occur during reduction to echelon
form, then by a sequence of pre-multiplications by elementary matrices, we arrive at an
upper-triangular matrix U. We make the following observations:

• Each time we perform elementary operation 3 via pre-multiplication by an elemen-
tary matrix Ei j, it is the case that i > j. Thus, the elementary matrices we use are
lower-triangular.

• Each elementary matrix is invertible, and E−1
i j is lower triangular when Ei j is. See

Exercise 1.35.

• The product of lower triangular matrices is again lower triangular. See Exercise 1.37.

By these observations, when no row exchanges take place in the reduction of A to echelon
form, we may amass the sequence of elementary matrices which achieve this reduction
into a single matrix M which is lower-triangular. Let us denote the inverse of M by L, also
a lower-triangular matrix. Then

LM = I, while MA = U,

where U is an upper-triangular matrix, an echelon form for A. Thus,

A = (LM)A = L(MA) = LU,

which is called the LU factorization of A, and

Ax = b ⇔ LUx = b .

133

1 Solving Linear Systems of Equations

Let y = Ux, so that Ly = b. Since L is lower-triangular, we may solve for y by a process
known as forward substitution. Once we have y, we may solve for Ux = y via backward
substitution as in the previous section.

But let us not forget that the previous discussion was premised on the idea that no row
exchanges take place in order to reduce A to echelon form. We are aware that, in some
instances, row exchanges are absolutely necessary to bring a pivot into position. As it
turns out, numerical considerations sometimes call for row exchanges even when a pivot
would be in place without such an exchange. How does this affect the above discussion?

Suppose we can know in advance just which row exchanges will take place in reducing
A to echelon form. With such knowledge, we can quickly write down an m-by-m matrix P,
called a permutation matrix, such that PA is precisely the matrix A except that all of those
row exchanges have been carried out. For instance, if we ultimately want the 1st row of A
to wind up as row 5, we make the the 5th row of P be (1, 0, 0, . . . , 0). More generally, if we
want the ith row of A to wind up as the jth row, we make the jth row of P have a 1 in the
ith column and zeros everywhere else. To illustrate this, suppose

P =

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 .
Then, for any 4-by-n matrix A, PA will be another 4-by-n whose 1st row is equal to the
2nd row of A, whose 2nd row equals the 4th row of A, whose 3rd row equals the 3rd row of
A, and whose 4th row equals the 1st row of A.

Now, the full story about the LU decomposition can be told. There is a permutation
matrix P such that PA will not need any row exchanges to be put into echelon form. It is
this PA which has an LU decomposition. That is, PA = LU.

Example 1.5.1
In O, the following commands were entered with accompanying output:

octave:1> A = [0 -1 3 1; 2 -1 1 4; 1 3 1 -1];

octave:2> [L,U,P] = lu(A)

L =

1.00000 0.00000 0.00000

0.50000 1.00000 0.00000

0.00000 -0.28571 1.00000

U =

2.00000 -1.00000 1.00000 4.00000

0.00000 3.50000 0.50000 -3.00000

0.00000 0.00000 3.14286 0.14286

134

1.5 LU Factorization of a Matrix

P =

0 1 0

0 0 1

1 0 0

We will use it to solve the matrix equation Ax = b, with

A =

0 −1 3 1
2 −1 1 4
1 3 1 −1

 and b =

−1
14
1

 .
Since we have been given the LU decomposition for PA, we will use it to solve
PAx = Pb—that is, solve

2 −1 1 4
1 3 1 −1
0 −1 3 1

 x =

14
1
−1

 .
We first solve Ly = Pb, or3

1 0 0
1/2 1 0
0 −2/7 1

 y =

14
1
−1

 .
We call our manner of solving for y forward substitution because we find the com-
ponents of y in forward order, y1 then y2 then y3.

y1 = 14 ,

1
2

y1 + y2 = 1 ⇒ y2 = −6 ,

−
2
7

y2 + y3 = −1 ⇒ y3 = −
19
7
,

so y = (14,−6,−19/7). Now we solve Ux = y, or
2 −1 1 4
0 7/2 1/2 −3
0 0 22/7 1/7

 x =

14
−6
−19/7

 ,
via backward substitution. The result is infinitely many solutions, all with the form

x =

73/11
−35/22
−19/22

0

 + t

−17/11
19/22
−1/22

1

 , t ∈ R .

3Asking O to display 7 ∗ L shows that this is an exact representation of L.

135

1 Solving Linear Systems of Equations

Of course, it is possible to automate the entire process—not just the part of finding the
LU-factorization of A, but also the forward and backward substitution steps. And there
are situations in which, for a given coefficient matrix A, a different kind of solution process
for the matrix equation Ax = b may, indeed, be more efficient than using the factorization
LU = PA. The O command

octave-3.0.0:57> A \ b

ans =

2.30569

0.82917

-0.99101

2.80220

(with A and b defined as in the Example 1.5.1) is sophisticated enough to look over the
matrix A and choose a suitable solution technique, producing a result. In fact, the solution
generated by the command is one that lies along the line of solutions

x =
(73
11
,−

35
22
,−

19
22
, 0

)
+ t

(
−

17
11
,

19
22
,−

1
22
, 1

)
, t ∈ R ,

found in Example 1.5.1, one occurring when t � 2.8022. This, however, reveals a short-
coming of the ‘A \ b’ command. It can find a particular solution, but when multiple
solutions exist, it cannot find them all.

1.6 Determinants and Eigenpairs

1.6.1 Determinants

In MATH 231 you were exposed, at least rudimentarily, to the idea of a determinant of
a matrix. Determinants of n-by-n matrices can be calculated fairly easily by hand for n
small. For instance, when n = 1, the value of the determinant is equal to the (single) entry
in the matrix. For n = 2, the determinant of A (denoted either by det(A) or |A|) is given by∣∣∣∣∣ a b

c d

∣∣∣∣∣ = ad − bc .

It is possible even to memorize a direct process yielding the formula for the determinant
of a 3-by-3 matrix∣∣∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12 ,

though by the time n ≥ 4 (and perhaps even when n = 3) most people will employ the
iterative process known as expansion of the determinant in cofactors if they are going to
calculate a determinant by hand.

136

1.6 Determinants and Eigenpairs

We will not describe how to do cofactor expansion in these notes, as we will rely on
software to calculate determinants for any square matrix with n ≥ 4 columns. (In O
the command that calculates the determinant of a matrix A is det(A).) Instead, in this
subsection we will provide some useful facts, some of which may be familiar to you from
MATH 231, about determinants. They appear as a numbered list below, in no particular
order of precedence.

Facts about determinants:

A. The idea of the determinant of a matrix does not extend to matrices which are
non-square. We only talk about the determinant of square matrices.

B. If A, B are square matrices having the same dimensions, then det(AB) = det(A) det(B).

C. The determinant of an upper- (or lower-) triangular matrix A = (ai j) is the product
of its diagonal elements. That is, det(A) = a11a22 · · · ann.

D. Suppose A, B are square matrices having the same dimensions and, in addition, B
has been obtained from A via one of the elementary row operations described in
Section 1.4. If B was obtained from A via

• row operation 1 (multiplication of a row by a constant c), then det(B) = c det(A).
• row operation 2 (exchanging two rows), then det(B) = −det(A).
• row operation 3 (adding a multiple of one row to another), then det(B) = det(A).

E. If any of the rows or columns of A contain all zeros, then |A| = 0.

F. The matrix A is nonsingular (i.e., A−1 exists) if and only if |A| , 0.

1.6.2 Eigenpairs

The main reason determinants were discussed in MATH 231 was as a device for finding
eigenvalue-eigenvector pairs (or eigenpairs). A complex number λ is considered an
eigenvalue of the n-by-n matrix A if there exists a nonzero vector v ∈ Rn for which

Av = λv , or, equivalently, if det(A − λI) = 0 . (1.8)

For a given (fixed) eigenvalue λ of A, any nonzero vector v ∈ Rn that satisfies Av = λv is
said to be an eigenvector of A associated with λ.

Some remarks:

• The definition of eigenvalue given above is not so easy to employ in practice. There
is a fact, the truth of which will become clear later, which says “λ is an eigenvalue
of A if and only if det(A − λI) , 0. We find eigenvalues of A by finding multiples of
the identity matrix which, when subtracted from A, produce a singular matrix.

137

1 Solving Linear Systems of Equations

• If n is the number of rows/columns in A, then the quantity det(A−λI) is (always) an
nth -degree polynomial. Hence it has, counting multiplicities, exactly n roots which
are the eigenvalues of A.

• If A is upper or lower triangular, its eigenvalues are precisely the elements found on
its main diagonal.

• Even though A has only real-number entries, it can have non-real (complex) eigen-
values. However, such eigenvalues always come in conjugate pairs—if (a + bi) is an
eigenvalue of A, then so is (a − bi).

• Once we know the eigenvalues, the search for eigenvectors is essentially the same
as Example 1.4.4. For each eigenvalue λ, we find the nullspace of a certain matrix,
namely (A − λI). In each instance, when you reduce (A − λI) to echelon form, there
will be at least one free column, and there can be no more free columns than the
multiplicity of λ as a zero of det(A−λI). There is one special case, however, the case
in which A is a symmetric matrix, when you are assured that

– the eigenvalues will all be real numbers, and
– for each eigenvalue λ, an echelon form that is row equivalent to (A − λI) will

have free columns in precisely the same number as the multiplicity of λ.

As this is not your first encounter with the problem of finding eigenpairs, we will give
just a few examples of the process. Keep in mind that, in practice, one finds approximate
eigenpairs using software. (The command in O is eig().) After these examples,
we will focus on what the eigenpairs tell us of the geometry of the transformation (v 7→
Av) : Rn

→ Rn.

Example 1.6.1
Find the eigenvalues and associated eigenvectors of the matrix

A =

7 0 −3
−9 −2 3
18 0 −8

 .
We first find the eigenvalues, doing so by getting an expression for det(A − λI),

setting it equal to zero and solving:∣∣∣∣∣∣∣∣
7 − λ 0 −3
−9 −2 − λ 3
18 0 −8 − λ

∣∣∣∣∣∣∣∣ = −(2 + λ)[(7 − λ)(−8 − λ) + 54]

= −(λ + 2)(λ2 + λ − 2)
= −(λ + 2)2(λ − 1) .

138

1.6 Determinants and Eigenpairs

Thus A has two distinct eigenvalues, λ1 = −2 (its algebraic multiplicity, as a zero of
det(A − λI) is 2), and λ3 = 1 (algebraic multiplicity 1).

To find eigenvectors associated withλ3 = 1, we solve the matrix equation (A−I)v = 0
(that is, we find the nullspace of (A − I)). Our augmented matrix appears on the left,
and an equivalent echelon form on the right:

6 0 −3 0
−9 −3 3 0
18 0 −9 0

 ∼

2 0 −1 0
0 2 1 0
0 0 0 0

 .
Since the algebraic multiplicity of λ3 is 1, the final bullet point on the previous page
indicates we should expect precisely one free column in the echelon form and, indeed,
the 3rd column is the free one. Writing x3 = 2t, we have x1 = t and x2 = −t, giving that

null(A − I) = {t(1,−1, 2) | t ∈ R} = span({(1,−1, 2)}) .

That is, the eigenvectors associated with λ3 = 1 form a line in R3 characterized by
(1,−1, 2).

Now, to find eigenvectors associated with λ1 = −2 we solve (A + 2I)v = 0. We know
going in that λ1 has algebraic multiplicity 2, so we should arrive at an echelon form
with either 1 or 2 free columns. We find that the augmented matrix

9 0 −3 0
−9 0 3 0
18 0 −6 0

 ∼

3 0 −1 0
0 0 0 0
0 0 0 0

 .
Columns 2 and 3 are free, and we set x2 = s, x3 = 3t. This means x1 = t, and hence

null(A + 2I) = {s(0, 1, 0) + t(1, 0, 3) | s, t ∈ R} = span({(0, 1, 0), (1, 0, 3)}) .

So, the eigenvectors associated with λ1 = −2 form a plane in R3, with each of these
eigenvectors obtainable as a linear combination of (0, 1, 0) and (1, 0, 3).

We finish this example by showing the commands and related output from O
that duplicate the analysis we have done by hand.

octave-3.0.0:106> A = [7 0 -3; -9 -2 3; 18 0 -8]

A =

7 0 -3

-9 -2 3

18 0 -8

octave-3.0.0:107> [V, lam] = eig(A)

V =

0.00000 0.40825 0.31623

139

1 Solving Linear Systems of Equations

1.00000 -0.40825 0.00000

0.00000 0.81650 0.94868

lam =

-2 0 0

0 1 0

0 0 -2

Compare these results with our work.

Example 1.6.2
Find the eigenvalues and associated eigenvectors of the matrix

A =

[
−1 2
0 −1

]
.

First, we have

det(A − λI) =

∣∣∣∣∣ −1 − λ 2
0 −1 − λ

∣∣∣∣∣ = (λ + 1)2 ,

showingλ = −1 is an eigenvalue (the only one) with algebraic multiplicity 2. Reducing
an augmented matrix for (A − (−1)I), we should have either one or two free columns.
In fact, the augmented matrix is [

0 2 0
0 0 0

]
,

and does not need to be reduced, as it is already an echelon form. Only its first column
is free, so we set x1 = t. This augmented matrix also tells us that x2 = 0, so

null(A + I) = {t(1, 0) | t ∈ R} = span({i}) .

Note that, though the eigenvalue has algebraic multiplicity 2, the set of eigenvectors
in this example requires only a single vector to characterize them (in contrast to the
previous example).

Compare this work to the output of this (related) O command.

octave-3.0.0:108> [V, lam] = eig([-1 2; 0 -1])

V =

1.00000 -1.00000

0.00000 0.00000

lam =

-1 0

0 -1

140

1.6 Determinants and Eigenpairs

Next we give an example where the matrix has non-real eigenvalues.

Example 1.6.3
Find the eigenvalues and associated eigenvectors of the matrix

A =

[
2 −1
1 2

]
.

We compute

det(A − λI) =

∣∣∣∣∣ 2 − λ −1
1 2 − λ

∣∣∣∣∣ = (λ − 2)2 + 1 = λ2
− 4λ + 5 .

The roots of this polynomial (found using the quadratic formula) are λ1 = 2 + i and
λ2 = 2− i; that is, the eigenvalues are not real numbers. This is a common occurrence,
and we can press on to find the eigenvectors just as we have in the past with real
eigenvalues. To find eigenvectors associated with λ1 = 2 + i, we look for x satisfying

(A − (2 + i)I)x = 0 ⇒

[
−i −1
1 −i

] [
x1
x2

]
=

[
0
0

]

⇒

[
−ix1 − x2
x1 − ix2

]
=

[
0
0

]
⇒ x1 = ix2 .

Thus all eigenvectors associated with λ1 = 2 + i are scalar multiples of u1 = (i, 1).
Proceeding with λ2 = 2 − i, we have

(A − (2 − i)I)x = 0 ⇒

[
i −1
1 i

] [
x1
x2

]
=

[
0
0

]

⇒

[
ix1 − x2
x1 + ix2

]
=

[
0
0

]
⇒ x1 = −ix2 ,

which shows all eigenvectors associated with λ2 = 2 − i to be scalar multiples of
u2 = (−i, 1).

Notice that u2, the eigenvector associated with the eigenvalue λ2 = 2 − i in the
last example, is the complex conjugate of u1, the eigenvector associated with the
eigenvalue λ1 = 2 + i. It is indeed a fact that, if the n-by-n real (i.e., entries all
real numbers) matrix A has a nonreal eigenvalue λ1 = λ + iµ with corresponding
eigenvector ξ1, then it also has eigenvalue λ2 = λ− iµwith corresponding eigenvector
ξ2 = ξ̄1.

Here is the relevant work in O.

141

1 Solving Linear Systems of Equations

octave-3.0.0:109> [V, lam] = eig([2 -1; 1 2])

V =

0.70711 + 0.00000i 0.70711 - 0.00000i

0.00000 - 0.70711i 0.00000 + 0.70711i

lam =

2 + 1i 0 + 0i

0 + 0i 2 - 1i

In Section 1.3, we investigated the underlying geometry associated with matrix mul-
tiplication. We saw that certain kinds of 2-by-2 matrices transformed the plane R2 by
rotating it about the origin; others produced reflections across a line. Of particular inter-
est here is Case 3 from that section, where the matrices involved caused rescalings that
were (possibly) different along two perpendicular axes. Now, using our knowledge of
eigenpairs, we can discuss the general case where these axes may not be perpendicular.

Recall that an eigenpair (λ,v) of A satisfies the relationship Av = λv. This says that the
output Av (from the function (x 7→ Ax)) corresponding to input v is a vector that lies in
the “same direction” as v itself and, in fact, is a predictable rescaling of v (i.e., it is λ times
v).

Example 1.6.4

Suppose A is a 2-by-2 matrix that has eigenvalues λ1 = 2, λ2 = 3 with corresponding
eigenvectors u1 = (1, 0), u2 = (1/

√
2, 1/

√
2). The matrix

A =

[
2 1
0 3

]

is just such a matrix, and the associated function (x 7→ Ax) rescales vectors in the
direction of (1, 0) by a factor of 2 relative to the origin, while vectors in the direction
of (1, 1) will be similarly rescaled but by a factor of 3. (See the figure below.) The
affect of multiplication by A on all other vectors in the plane is more complicated to
describe, but will nevertheless conform to these two facts. The figure shows (on the
left) the unit circle and eigenvectors u1, u2 of A. On the right is displayed how this
circle is transformed via multiplication by A. Notice that Au1 faces the same direction
as u1, but is twice as long; the same is true of Au2 in relation to u2, except it is 3 times
as long. The figure displays one more unit vector w along with its image Aw under
matrix multiplication by A.

142

1.7 Linear Independence and Matrix Rank

u1

u2
w

-2 -1 1 2

-2

-1

1

2

A u1

A u2
Aw

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

We leave it to the exercises to discover what may be said about the eigenvalues of a
2-by-2 matrix A when the associated function (x 7→ Ax) rotates the plane about the origin.
We also investigate similar ideas when A is a 3-by-3 matrix.

1.7 Linear Independence and Matrix Rank

We have defined the nullspace of an m-by-n matrix A as the set of vectors v ∈ Rn satisfying
the equation Av = 0. In light of the discussion in Section 1.2, the components of any
v ∈ null(A) offer up a way to write 0 as a linear combination of the columns of A:

0 = Av =
[

A1 A2 · · · An
]

v1
v2
...

vn

 = v1A1 + v2A2 + · · · + vnAn .

For some matrices A, the nullspace consists of just one vector, the zero vector 0. We make
a definition that helps us characterize this situation.

Definition 1.7.1. Let S = {u1,u2, . . .uk} be a set of vectors in Rm. If the zero vector 0 ∈ Rn

can be written as a linear combination

c1u1 + c2u2 + · · · + ckuk = 0 ,

with at least one of the coefficients c1, . . . , ck nonzero, then the set S of vectors is said to
be linearly dependent. If, however, the only linear combination of the vectors in S that
yields 0 is the one with c1 = c2 = · · · = ck = 0, then set S is linearly independent.

143

1 Solving Linear Systems of Equations

Employing this terminology, when null(A) = {0} the set of columns of A are linearly
independent. Otherwise, this set is linearly dependent.

Suppose, as in Example 1.4.4, we set out to find the nullspace of A using Gaussian
elimination. The result of elementary row operations is the row equivalence of augmented
matrices [

A 0
]
∼

[
R 0

]
,

where R is an echelon form for A. We know that v ∈ null(A) if and only if v ∈ null(R).
Let’s look at several possible cases:

1. Case: R has no free columns.
Several possible appearances of R are

R =

p ∗ ∗ · · · ∗

0 p ∗ · · · ∗

0 0 p · · · ∗

...
...

...
. . .

...
0 0 0 · · · p

, (1.9)

and

R =

p ∗ ∗ · · · ∗

0 p ∗ · · · ∗

0 0 p · · · ∗

...
...

...
. . .

...
0 0 0 · · · p
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

. (1.10)

Regardless of whether R has form (1.9) or form (1.10), the elements of v are uniquely
determined—there is no other solution to Rv = 0 but the one with each component
v j = 0 for j = 1, . . . ,n. This means that null(R) = null(A) = {0} and, correspondingly,
that the columns of A are linearly independent.

144

1.7 Linear Independence and Matrix Rank

2. Case: R has free columns.
A possible appearance of R is

R =

p ∗ ∗ ∗ ∗ · · · ∗ ∗

0 0 0 p ∗ · · · ∗ ∗

0 0 0 0 p · · · ∗ ∗

...
...

...
. . .

...
0 0 0 0 0 · · · p ∗

0 0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 0

(1.11)

The matrix R pictured here (as a ‘for instance’) has at least 3 free columns (the 2nd ,
3rd and last ones), each providing a degree of freedom to the solution of Av = 0.
If the solution of Av = 0 has even one degree of freedom (one free column in an
echelon form of A), then the columns of A are linearly dependent.

It should be evident that the set of pivot columns of R are linearly independent. That
is, if we throw out the free columns to get a smaller matrix R̃ of form (1.9) or (1.10),
then the columns of R̃ (and correspondingly, those of A from which these pivot
columns originated) are linearly independent.

The number of linearly independent columns in A is a quantity that deserves a name.

Definition 1.7.2. The rank of an m-by-n matrix A, denoted by rank(A), is the number of
pivots (equivalently, the number of pivot columns) in an echelon form R for A.

The number of free columns in R is called the nullity, of A, denoted by nullity(A).

Note that, for an m-by-n matrix, rank(A) + nullity(A) = n.
Now, suppose some vector b ∈ span(S), where S = {u1,u2, . . . ,uk} is some collection of

vectors. That is,
b = a1u1 + · · · + akuk ,

for some choice of coefficients a1, . . . ak. If the vectors in S are linearly dependent, then
there is a choice of coefficients c1, . . . ck, not all of which are zero, such that

c1u1 + c2uk + · · · + ckuk = 0 .

Let us assume that ck , 0. Solving this equation for uk, we get

uk = −
1
ck

(c1u1 + · · · + ck−1uk−1) ,

145

1 Solving Linear Systems of Equations

which we may then plug back into our equation for b:

b = a1u1 + · · · + ak−1uk−1 + akuk

= a1u1 + · · · + ak−1uk−1 −
ak

ck
(c1u1 + · · · + ck−1uk−1)

=

(
a1 −

akc1

ck

)
u1 +

(
a2 −

akc2

ck

)
u2 + · · · +

(
ak−1 −

akck−1

ck

)
uk−1 ,

which shows that, by taking d j = a j − akc j/ck for j = 1, . . . , k − 1, this b which was already
known to be a linear combination of u1, . . . , uk may be rewritten as a linear combination
d1u1 + · · ·+dk−1uk−1 of the reduced collection {u1, . . . ,uk−1}. Of course, if this reduced set of
vectors is linearly dependent, we may remove another vector—let us assume uk−1 would
suit our purposes—to arrive at an even smaller set {u1, . . . ,uk−2}which has the same span
as the original set S, and continue in this fashion until we arrive at a subcollection of S
which is linearly independent. We have demonstrated the truth of the following result.

Theorem 1.7.3. Suppose S is a collection of vectors in Rn. Then some subset B of S (that
is, every vector in B comes from S, but there may be vectors in S excluded from B) has the
property that span(B) = span(S) and B is linearly independent.

The collection B is called a basis (a term we will define more carefully in a later section)
for span(S).

The previous theorem is one of those “existence” theorems you see in mathematics,
guaranteeing something exists, but not telling how to find it. Yet, to find such a set B we
may use a strategy adapted from our comments in Point 2 of this section. That is, we may
build a matrix whose columns are the vectors in S

A =
[

u1 u2 · · · uk
]
.

We may then reduce A to echelon form R (another matrix whose dimensions are the same
as A—there is no need to augment A with an extra column for this task), and take B to be
the set of columns of A—it may be all of them—which correspond to pivot columns in R.
The number of elements in B will be rank(A).

There is an important relationship between the value of nullity(A) and the number of
solutions one finds when solving Ax = b. You may already have suspected this, given the
similarity of results in Examples 1.4.3 and 1.4.4, both of which involved the same matrix
A. In Example 1.4.4, we found null(A) to be the line of vectors passing through the origin
in R3

t(−1, 2, 0), t ∈ R .

In Example 1.4.3, we solved Ax = (3, 9), getting solution

(2, 0, 1) + t(−1, 2, 0), t ∈ R ,

146

1.7 Linear Independence and Matrix Rank

another line of vectors in R3, parallel to the first line, but offset from the origin by the
vector (2, 0, 1). One could describe this latter solution as being the sum of the nullspace
and a particular solution of Ax = b.4 Observe that, if xp satisfies the equation Ax = b and
xn ∈ null(A), then for v = xp + xn,

Av = A(xp + xn) = Axp + Axn = b + 0 = b .

Thus, when Ax = b has a solution, the number of solutions is at least as numerous as the
number of vectors in null(A). In fact, they are precisely as numerous, as stated in the next
theorem.

Theorem 1.7.4. Suppose the m-by-n matrix A and vector b ∈ Rm (both fixed) are such
that the matrix equation Ax = b is consistent (i.e., the equation has a solution). Then the
solutions are in one-to-one correspondence with the elements in null(A). Said another
way, if null(A) has just the zero vector, then Ax = b has just one solution. If null(A) is a
line (plane, etc.) of vectors, then so is the set of solutions to Ax = b.

If you review Examples 1.4.3 and 1.4.4 you will see that the appearance of the free
variable t is due to a free column in the echelon form we got for A. The rank of A—its
number of linearly independent columns it has, is 2, not 3.

We finish this section with an important theorem. Some of these results have been stated
(in some form or other) elsewhere, but the theorem provides a nice overview of facts about
square matrices.

Theorem 1.7.5. Suppose A is an n-by-n matrix. The following are equivalent (that is, if
you know one of them is true, then you know all of them are).

(i) The matrix A is nonsingular.

(ii) The matrix equation Ax = b has a unique solution for each possible n-vector b.

(iii) The determinant det(A) , 0.

(iv) The nullspace null(A) = {0}.

(v) The columns of A are linearly independent

(vi) rank(A) = n.

(vii) nullity(A) = 0.

4That ought to sound like language from MATH 231, when comparisons are made between solutions of
nonhomogeneous linear ODEs and their homogeneous counterparts. Indeed, the use of the word linear
when describing such ODEs suggests certain principles from linear algebra undergird the theory of linear
ODEs.

147

1 Solving Linear Systems of Equations

Exercises

1.1 Give a particularly simple command in O (one which does not require you to
type in every entry) which will produce the matrix

a)

0 0 3 0
0 0 0 5
0 0 0 0
0 0 0 0

b)

0 −1 0 0 0
0 0 2 0 0
2 0 0 1 0
0 7 0 0 −4
0 0 1 0 0

c)

1 1
1 1
1 1
3 −2

1.2 Suppose A is a 5-by-3 matrix.

a) If B is another matrix and the matrix product AB makes sense, what must be true
about the dimensions of B?

b) If the matrix product BA makes sense, what must be true about the dimensions of
B?

1.3 Suppose A, B are matrices for which the products AB and BA are both possible (both
defined).

a) For there to be any chance that AB = BA, what must be true about the dimensions
of A? Explain.

b) When we say that AB , BA in general, we do not mean that it never happens, but
rather that you cannot count on their equality. Write a function in O which,
when called, generates two random 3-by-3 matrices A and B, finds the products AB
and BA, and checks whether they are equal. Run this code 20 times, and record how
many of those times it happens that AB = BA. Hand in a printout of your function.

c) Of course, when both A and B are square matrices with one of them equal to the
identity matrix, it will be the case that AB = BA. What other instances can you think
of in which AB = BA is guaranteed to hold?

148

1.7 Linear Independence and Matrix Rank

1.4 Suppose A commutes with every 2-by-2 matrix (i.e., AB = BA) and, in particular,

A =

[
a b
c d

]
commutes with B1 =

[
1 0
0 0

]
and B2 =

[
0 1
0 0

]
.

Show that a = d and b = c = 0—that is, if AB = BA for all matrices B, then A is a multiple
of the identity matrix.

1.5 Which of the following matrices are guaranteed to equal (A + B)2?

(B+A)2 , A2 +2AB+B2 , A(A+B)+B(A+B) , (A+B)(B+A) , A2 +AB+BA+B2 .

1.6

a) If A is invertible and AB = AC, prove quickly that B = C.

b) If A =

[
1 0
0 0

]
, find an example with AB = AC but B , C.

1.7 If the inverse of A2 is B, show that the inverse of A is AB. (Thus, A is invertible
whenever A2 is.)

1.8 Verify, via direct calculation, Theorem 1.1.3. That is, use the knowledge that A, B
are n-by-n nonsingular matrices to show that AB is nonsingular as well, having inverse
B−1A−1.

1.9 We have learned several properties of the operations of inversion and transposition of
a matrix. The table below summarizes these, with counterparts appearing on the same row.

matrix transposition matrix inversion

i. (AT)T
= A (A−1)−1 = A

ii. (AB)T = BTAT (AB)−1 = B−1A−1

iii. (A + B)T = AT + BT

Show that property iii. has no counterpart in the “matrix inversion” column. That is, in
general it is not the case that (A + B)−1 = A−1 + B−1.

1.10 The previous two problems asked you to “prove” or “show” (basically synonymous
words in mathematics) something. Yet there is something fundamentally different about
what is required in the two problems. In one problem, all you need to do is come up
with a specific instance—matrices A, B whose entries are concrete numbers—to prove the

149

1 Solving Linear Systems of Equations

assertion. In the other problem, if you resort to specific matrices then all you succeed in
doing is showing the assertion is true in one particular instance. In which problem is it
that you cannot get specific about the entries in A, B? What is it in the wording of these
problems that helps you determine the level of generality required?

1.11

a) Explain why a it is necessary that a symmetric matrix be square.

b) Suppose A = (ai j) is an n-by-n matrix. Prove that A is symmetric if and only if ai j = a ji
for each 1 ≤ i, j ≤ n.

1.12 Suppose there is a town which perenially follows these rules:

• The number of households always stays fixed at 10000.

• Every year 30 percent of households currently subscribing to the local newspaper
cancel their subscriptions.

• Every year 20 percent of households not receiving the local newspaper subscribe to
it.

a) Suppose one year, there are 8000 households taking the paper. According to the data
above, these numbers will change the next year. The total of subscribers will be

(0.7)(8000) + (0.2)(2000) = 6000 ,

and the total of nonsubscribers will be

(0.3)(8000) + (0.8)(2000) = 4000 .

If we create a 2-vector whose first component is the number of subscribers and
whose 2nd component is the number of nonsubscribers, then the initial vector is
(8000, 2000), and the vector one year later is[

0.7 0.2
0.3 0.8

] [
8000
2000

]
=

[
6000
4000

]
.

What is the long-term outlook for newspaper subscription numbers?

b) Does your answer above change if the initial subscription numbers are changed to
9000 subscribing households? Explain.

150

1.7 Linear Independence and Matrix Rank

1.13 In O, generate 50 random 4-by-4 matrices. Determine how many of these
matrices are singular. (You may find the command det() helpful. It’s a simple command
to use, and like most commands in O, you can find out about its use by typing
help det. You may also wish to surround the work you do on one matrix with the
commands for i = 1:50 and end.) Based upon your counts, how prevalent among all
4-by-4 matrices would you say that singular matrices are? What if you conduct the same
experiment on 5-by-5 matrices? 10-by-10? (Along with your answers to the questions,
hand in the code you used to conduct one of these experiments.)

1.14 Consider a matrix A that has been blocked in the following manner:

A =

[
A11 A12 A13
A21 A22 A23

]
,

where A11 is 2-by-3, A23 is 4-by-2, and the original matrix A has 7 columns.

a) How many rows does A have?

b) Determine the dimensions of the submatrices A12, A13, A21, and A22.

c) Give at least three different ways to partition a matrix B that has 5 columns so that
a block-multiplication of the matrix product AB makes sense. For each of your
answers, specify the block structure of B using Bi j notation just as we originally gave
the block structure of A, and indicate the dimensions of each block.

d) For each of your answers to part (c), write out the corresponding block structure of
the product AB, indicating how the individual blocks are computed from the blocks
of A and B (as was done in the notes immediately preceding Example 1.2.2).

1.15 The first row of a matrix product AB is a linear combination of all the rows of B.
What are the coefficients in this combination, and what is the first row of AB, if

A =

[
2 1 4
0 −1 1

]
and B =

1 1
0 1
1 0

 ?

1.16 Describe the rows of EA and the columns of AE if E =

[
1 5
0 1

]
. (Note that, for both

products to make sense, A must be 2-by-2.)

1.17

a) Suppose A is a 4-by-n matrix. Find a matrix P (you should determine appropriate
dimensions for P, as well as specify its entries) so that PA has the same entries as
A but the 1st , 2nd , 3rd and 4th rows of PA are the 2nd , 4th , 3rd and 1st rows of A
respectively. Such a matrix P is called a permutation matrix.

151

1 Solving Linear Systems of Equations

b) Suppose A is an m-by-4 matrix. Find a matrix P so that AP has the same entries as
A but the 1st , 2nd , 3rd and 4th columns of AP are the 2nd , 4th , 3rd and 1st columns of
A respectively.

c) Suppose A is an m-by-3 matrix. Find a matrix B so that AB again has 3 columns,
the first of which is the sum of all three columns of A, the 2nd is the difference of the
1st and 3rd columns of A (column 1 - column 3), and the 3rd column is 3 times the
1st column of A.

1.18 We have given two alternate ways of achieving translations of the plane by a vector
w = (a, b):

(i) (v 7→ v + w), and

(ii) (v 7→ ṽ 7→ Aṽ), where A =

1 0 a
0 1 b
0 0 1

.
If v ∈ R2 has homogeneous coordinates ṽ ∈ R3, use the indicated blocking on A in (ii) and
what you know about block multiplication to show that the upper block of Aṽ gives the
same result as the mapping in (i).

1.19

a) Multiply out the matrices on the left-hand side of (1.5) to show that, indeed, they are
equal to the matrix on the right-hand side for α = 2θ.

b) Show that a matrix in the form (1.6) may be expressed in an alternate form[
a2
− b2 2ab

2ab b2
− a2

]
,

for some choice of constants a, b such that a2 + b2 = 1.

1.20 Give 3-by-3 examples (not simply A = 0 nor A = In) of

a) a diagonal matrix: ai j = 0 when i , j.

b) a symmetric matrix: ai j = a ji for all i and j.

c) an upper triangular matrix: ai j = 0 if i > j.

d) a lower triangular matrix: ai j = 0 if i < j.

e) a skew-symmetric matrix: ai j = −a ji for all i and j.

152

1.7 Linear Independence and Matrix Rank

Obviously there is no real need for the requirement that these examples have 3 rows and 3
columns. But which of these matrix types are only possible when the matrix is square (i.e.,
n-by-n for some n)?

1.21

a) How many entries can be chosen independently in a symmetric n-by-n matrix?

b) How many entries can be chosen independently in a skew-symmetric n-by-n matrix?

1.22 Determine which of the following is an echelon form. For those that are, indicate
what are the pivot columns and the pivots.

a)

0 2 1 6 5 −1
0 0 0 3 2 7
0 0 0 0 1 0
0 0 0 0 0 2

b)

2 7 3 −1 −5
−1 1 1 4 2
0 2 3 5 1
0 0 −1 −1 7
0 0 0 −3 5
0 0 0 0 1

c)

[
1 0 0 0
0 0 3 0

]

d)
[
1 0 0 0
0 0 0 0

]
e)

[
1 4 2 8

]

f)

1 0 −2 3
0 2 3 −1
0 0 1 2
0 −1 0 5

1.23 Use backward substitution to solve the following systems of equations.

a)
x1 − 3x2 = 2

2x2 = 6

153

1 Solving Linear Systems of Equations

b)
x1 + x2 + x3 = 8

2x2 + x3 = 5
3x3 = 9

c)

x1 + 2x2 + 2x3 + x4 = 5
3x2 + x3 − 2x4 = 1
−x3 + 2x4 = −1

4x4 = 4

1.24 Write out the system of equations that corresponds to each of the following aug-
mented matrices.

a)
[

3 2 8
1 5 7

]

b)
[

5 −2 1 3
2 3 −4 0

]

c)

2 1 4 −1
4 −2 3 4
5 2 6 −1

1.25 Suppose we wish to perform elementary operation 3 on some matrix A. That is, we
wish to produce a matrix B which has the same dimensions as A, and in most respects is
identical to A except that

(row i of B) = (row i of A) + β(row j of A) .

If A is m-by-n, then B = Ei jA, where Ei j is the m-by-m elementary matrix

Ei j :=

1
. . .

1
. . .

β 1
. . .

1

which looks just like the m-square identity matrix Im except for the entry β appearing in
its ith row, jth column. O code for producing such a matrix might look like

154

1.7 Linear Independence and Matrix Rank

function elementaryMatrix = emat(m, i, j, val)

elementaryMatrix = eye(m,m);

elementaryMatrix(i,j) = val;

end

a) Create a text file containing the code above and called emat.m. Place this file in your
working directory, the one you are in when running O (or M).

b) Another list of commands to put into a file, call it simpleGE.m, is the following:

B = A;

numRows = size(B)(1);

numCols = size(B)(2);

currRow = 1;

currCol = 1;

while ((currRow < numRows) && (currCol < numCols))

while ((abs(B(currRow, currCol)) < 10ˆ(-10)) && (currCol < numCols))

B(currRow, currCol) = 0;

currCol = currCol + 1;

end

if (currCol < numCols)

pivot = B(currRow, currCol);

for ii = (currRow + 1):numRows

B = emat(numRows, ii, currRow, -B(ii,currCol)/pivot) * B;

% Remove the final semicolon in the previous line

% if you would like to see the progression of matrices

% from the original one (A) to the final one in echelon form.

end

end

currRow = currRow + 1;

currCol = currCol + 1;

end

B

One would run simpleGE after first storing the appropriate coefficients of the linear system
in an augmented matrix A.

Save the commands above under the filename simpleGE.m in your working directory.
Then test it out on the matrix (assumed to be already augmented)

A =

1 3 2 1 5
3 2 6 3 1
6 2 12 4 3

 .

155

1 Solving Linear Systems of Equations

If you have arranged and entered everything correctly, the result will be the matrix in
echelon form

1 3 2 1 5
0 −7 0 0 −14
0 0 0 −2 5

 .
1.26 Using simpleGE (see Exercise 1.25) as appropriate, find all solutions to the following
linear systems of equations:

a)
2x − z = −4

−4x − 2y + z = 11
2x + 2y + 5z = 3

b)
x1 + 3x2 + 2x3 + x4 = 5

3x1 + 2x2 + 6x3 + 3x4 = 1
6x1 + 2x2 + 12x3 + 4x4 = 3

c)
x + 3y = 1

−x − y + z = 5
2x + 4y − z = −7

1.27 Using simpleGE (see Exercise 1.25) as appropriate, find all solutions to the following
linear systems of equations:

x + y = 5
x − 7y − 12z = 1
3x − y − 5z = 15

2x + 4y + 3z = 11
x − y − 3z = 4 .

1.28 Find choices of constants c1, c2 and c3 such that b = c1v1 + c2v2 + c3v3. That is, write b
as a linear combination of v1, v2, and v3. If there is only one such linear combination, state
how you know this is so. Otherwise, your answer should include all possible choices of
the constants c1, c2 and c3.

a) v1 = (1, 3,−4), v2 = (0, 1, 2), v3 = (−1,−5, 1), b = (0,−5,−6).

b) v1 = (1, 2, 0), v2 = (2, 3, 3), v3 = (−1, 1,−8), b = (5, 9, 4).

c) v1 = (1, 0, 3,−2), v2 = (0, 1, 2,−1), v3 = (3,−4, 1,−2), b = (1,−5,−7, 3).

1.29

156

1.7 Linear Independence and Matrix Rank

a) For each given set of matrices, show that they commute (i.e., can be multiplied in any
order and give the same answer; find an easy way if you can), and find the product
of all matrices in the set. (A missing entry should be interpreted as a zero.)

(i)

1

b21 1
1

 ,

1
1

b31 1

(ii)

1

b21 1
1

1

 ,

1
1

b31 1
1

 ,

1
1

1
b41 1

(iii)

1

1
b32 1

1

 ,

1

1
1

b42 1

b) Describe as precisely as you can what characterizes the sets of matrices in (i)–(iii) of

part (a). (Each is the set of all matrices which . . .)

c) State and prove a general result for n-by-n matrices, of which (i)–(iii) above are
special cases.

1.30 Find the nullspace of the matrix

A =

1 2 3 4 3
3 6 18 9 9
2 4 6 2 6
4 8 12 10 12
5 10 24 11 15

 .

1.31 Consider the system of linear equations

x1 + 3x2 + 2x3 − x4 = 4
−x1 − x2 − 3x3 + 2x4 = −1

2x1 + 8x2 + 3x3 + 2x4 = 16
x1 + x2 + 4x3 + x4 = 8 .

a) Determine the associated augmented matrix for this system. Run simpleGE on this
matrix to see that the algorithm fails to put this augmented matrix into echelon form.
Explain why the algorithm fails to do so.

b) Though this would not normally be the case, the output from simpleGE for this
system may be used to find all solutions to the system anyway. Do so.

157

1 Solving Linear Systems of Equations

1.32 Solve the two linear systems

x1 + 2x2 − 2x3 = 1
2x1 + 5x2 + x3 = 9
x1 + 3x2 + 4x3 = 9

and
x1 + 2x2 − 2x3 = 9
2x1 + 5x2 + x3 = 9
x1 + 3x2 + 4x3 = −2

by doing elimination on a 3-by-5 augmented matrix and then performing two back sub-
stitutions.

1.33 A well-known formula for the inverse of a 2-by-2 matrix

A =

[
a b
c d

]
is A−1 =

1
ad − bc

[
d −b
−c a

]
.

Use Gaussian elimination (do it by hand) on the matrix A above to derive this formula
for the inverse matrix A−1. Handle separately the following cases: I) a , 0, II) a = 0 but
c , 0, and III) both a, c = 0. What does a nonzero determinant for A have to do with
nonsingularity in this case?

1.34 Let A = (ai j), and suppose that a11 , 0 (i.e., it has a pivot in the first row, first column).
Use subscript notation to write down

a) the multiplier li1 to be subtracted from row i during Gaussian elimination in order
to zero out the entry in row i below this pivot.

b) the new entry that replaces ai j (j any column number) after that subtraction.

c) the second pivot.

1.35 Show that the elementary matrix Ei j of Exercise 1.25 is invertible, and find the form
of its inverse. You may assume, as is always the case when such elementary matrices are
used in Gaussian elimination, that i > j.

1.36

a) Suppose

A1 =

1 0 0

a21 1 0
a31 0 1

 and A2 =

1 0 0
0 1 0
0 a32 1

 .
Find a general expression (give the entries) for each of

(i) A1A2

(ii) (A1A2)−1

(iii) A2A1

(iv) (A2A1)−1

158

1.7 Linear Independence and Matrix Rank

b) Suppose

A1 =

1 0 0 0

a21 1 0 0
a31 0 1 0
a41 0 0 1

 , A2 =

1 0 0 0
0 1 0 0
0 a32 1 0
0 a42 0 1

 , and A3 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 a43 1

 .
Find a general expression (give the entries) for each of

(i) A1A2A3

(ii) (A1A2A3)−1

(iii) A3A2A1

(iv) (A3A2A1)−1

c) What special feature does the calculation of A1A2 and (A2A1)−1 (in part (a)) and
A1A2A3 and (A3A2A1)−1 (in part (b)) have? State the corresponding result for arbi-
trary n ≥ 2.

1.37 Prove that the product of lower triangular matrices is again lower triangular.

1.38 Use experimentation in Oto determine which properties of a nonsingular matrix
A seem to hold also for its inverse: (1) A is triangular, (2) A is symmetric, (3) all entries in A
are whole numbers, (4) all entries in A are fractions (rational numbers) or whole numbers.

1.39

a) We know that two points in a plane determine a unique line. When those points are
not located at the same x-coordinate, the line will take the form

p(x) = mx + b ,

a polynomial of degree at most one. Under what conditions on the points would
this really be a polynomial of degree zero?

b) If you remember anything about your study of Simpson’s Rule in MATH 162, you
may suspect that, when three points no two of which share the same x-coordinate
are specified in the plane, there is a unique polynomial

p(x) = ax2 + bx + c ,

having degree at most 2, that passes through the three points. This statement is,
indeed, true. One might say the polynomial p interpolates the given points, in that
it passes through them filling in the gaps between.

i. Write the similar statement that applies to a set of n points in the plane, no two
of which share the same x-coordinate.

159

1 Solving Linear Systems of Equations

ii. Consider the problem of finding the smallest degree polynomial that interpo-
lates the n points (x1, y1), (x2, y2), . . . , (xn, yn) in the plane. Once the coefficients
a0, a1, . . . , an−1 of

p(x) = a0 + a1x + a2x2 + . . . + an−1xn−1

are found, we are done. The information we have at our disposal to find these
coefficients is that

p(x1) = y1 , p(x2) = y2 , . . . , p(xn) = yn .

That is, we have n equations to determine the n unknowns. Find the matrix B
so that the problem of finding the coefficients of p is equivalent to solving the
matrix problem

B

a0
a1
...

an−1

 =

y1
y2
...

yn

 .
c) Use O and your answer to the previous part to find the coefficients of the

polynomial that interpolates the six points (−2,−63), (−1, 3), (0, 1), (1,−3), (2, 33), and
(3, 367).

1.40 Some texts talk not only about an LU-factorization of a matrix, but of an LDU-
factorization, where D is a diagonal matrix.

a) Under what conditions is A nonsingular, if A is the product

A =

1 0 0
−1 1 0
0 −1 1

d1

d2
d3

1 −1 0
0 1 −1
0 0 1

 ?

b) Using A as factored above, solve the system Ax = b starting with Lc = b:
1 0 0
−1 1 0
0 −1 1

c1
c2
c3

 =

0
0
1

 = b .

1.41 Solve LUx =

1 0 0
1 1 0
1 0 1

2 4 4
0 1 2
0 0 1

x1
x2
x3

 =

2
0
2

 without multiplying L and U to find A.

160

1.7 Linear Independence and Matrix Rank

1.42 Write down all six of the 3-by-3 permutation matrices, including P = I. Identify their
inverses—permutation matrices themselves which satisfy PP−1 = I.

1.43 Below we have the output from O’s lu() command for a particular matrix.

octave-3.0.0:177> A = [6 -4 5; -4 3 1; 2 -1 1];

octave-3.0.0:178> [L, U, P] = lu(A)

L =

1.00000 0.00000 0.00000

-0.66667 1.00000 0.00000

0.33333 1.00000 1.00000

U =

6.00000 -4.00000 5.00000

0.00000 0.33333 4.33333

0.00000 0.00000 -5.00000

P =

1 0 0

0 1 0

0 0 1

Use it (and not some other means) to find all solutions to the linear system of equations

6x − 4y + 5z = −10
−4x + 3y + z = −1

2x − y + z = −1 .

1.44 Below we have the output from O’s lu() command for a particular matrix.

octave-3.0.0:157> [L, U, P] = lu([1 -2 3; 1 -4 -7; 2 -5 1])

L =

1.00000 0.00000 0.00000

0.50000 1.00000 0.00000

0.50000 -0.33333 1.00000

U =

2.00000 -5.00000 1.00000

0.00000 -1.50000 -7.50000

0.00000 0.00000 0.00000

P =

0 0 1

161

1 Solving Linear Systems of Equations

0 1 0

1 0 0

Use it (and not some other means) to find all solutions to the linear system of equations

x − 2y + 3z = −13
x − 4y − 7z = 1
2x − 5y + z = −19 .

1.45 Here is a quick tutorial of how one might use O to produce the circle and
oval in the figure from Example 1.6.4. First, to get the circle, we create a row vector of
parameter values (angles, in radians) running from 0 to 2π in small increments, like 0.05.
Then we create a 2-row matrix whose 1st row holds the x-coordinates around the unit circle
(corresponding to the parameter values) and whose 2nd row contains the corresponding
y-coordinates. We then plot the list of x-coordinates against the list of y-coordinates.

octave-3.0.0:121> t = 0:.05:2*pi;

octave-3.0.0:122> inPts = [cos(t); sin(t)];

octave-3.0.0:123> plot(inPts(1,:),inPts(2,:))

octave-3.0.0:124> axis(‘‘square’’)

The last command in the group above makes sure that spacing between points on the
x- and y-axes look the same. (Try the same set of commands omitting the last one.) At
this stage, if you wish to draw in some lines connecting the origin to individual points
on this circle, you can do so. For instance, given that I chose spacing 0.05 between my
parameter values, the “circle” drawn above really consists of 126 individual points (pixels),
as evidenced by the commands

octave-3.0.0:125> length(t)

ans = 126

octave-3.0.0:126> size(inPts)

ans =

2 126

So, choosing (in a somewhat haphazard fashion) to draw in vectors from the origin to
the 32nd (green), 55th (red) and 111th (black) of these points, we can use the following
commands (assuming that you have not closed the window containing the plot of the
circle):

octave-3.0.0:147> hold on

octave-3.0.0:148> plot([0 inPts(1,32)], [0 inPts(2,32)], ’g’)

octave-3.0.0:149> plot([0 inPts(1,55)], [0 inPts(2,55)], ’r’)

octave-3.0.0:150> plot([0 inPts(1,111)], [0 inPts(2,111)], ’k’)

octave-3.0.0:151> hold off

162

1.7 Linear Independence and Matrix Rank

To get the corresponding oval, we need to multiply the vectors that correspond to the
points on the circle (drawn using the commands above) by the A in Example 1.6.4.

octave-3.0.0:152> A = [2 1; 0 3];

octave-3.0.0:153> outPts = A*inPts;

octave-3.0.0:154> plot(outPts(1,:),outPts(2,:))

octave-3.0.0:155> axis("square")

Of course, if you want to know what point corresponds to any individual vector, you can
explicitly ask for it. For instance, you can get the point Av on the oval corresponding to
v = (−1/

√
2, 1/

√
2) quite easily using the commands

octave-3.0.0:156> v = [-1/sqrt(2); 1/sqrt(2)]

v =

-0.70711

0.70711

octave-3.0.0:157> A*v

ans =

-0.70711

2.12132

To see Av for the three (colored) vectors we added to our circle’s plot, you can use the
commands (assuming the window containing the oval is the last plot your produced)

octave-3.0.0:157> subInPts = inPts(:,[32 55 111]);

octave-3.0.0:158> subOutPts = A*subInPts;

octave-3.0.0:159> hold on

octave-3.0.0:160> plot([0 subOutPts(1,1)], [0 subOutPts(2,1)], ’g’)

octave-3.0.0:161> plot([0 subOutPts(1,2)], [0 subOutPts(2,2)], ’r’)

octave-3.0.0:162> plot([0 subOutPts(1,3)], [0 subOutPts(2,3)], ’k’)

octave-3.0.0:163> hold off

Use commands like these to help you answer the following questions.

a) Choose an angle α ∈ [0, 2π) and form the corresponding matrix A of the form (1.4).
In Item 1 of Section 1.3 we established that multiplication by A achieves a rotation
of the plane. Find the eigenvalues of A.

b) Consider the matrix A from Example 1.6.3. What are its eigenvalues? Describe
as accurately as you can the way the plane R2 is transformed when vectors are
multiplied by this A.

c) Still working with the matrix A from Example 1.6.3, write it as a product A = BC,
where both matrices on the right side are 2-by-2, one of which has the form (1.4) and

163

1 Solving Linear Systems of Equations

the other has the form (1.7). (Hint: If (a + bi) is one of the eigenvalues of A, then the
quantity

√

a2 + b2 should come into play somewhere.)

d) Make your best effort to accurately finish this statement:

If A is a 2-by-2 matrix with complex eigenvalues (a + bi) and (a − bi) (with
b , 0), then multiplication by A transforms the plane R2 by

1.46 Suppose A is a 2-by-2 matrix with real-number entries and having at least one
eigenvalue that is real.

a) Explain how you know A has at most one other eigenvalue.

b) Can A have a non-real eigenvalue along with the real one? Explain.

c) Consider the mapping (x 7→ Ax) : R2
→ R2. Is it possible that, given the matrix A,

this function brings about a (rigid) rotation of the plane? Explain.

1.47 Write a matrix A such that, for each v ∈ R2, Av is the reflection of v

a) across the y-axis. Then use O to find the eigenpairs of A.

b) across the line y = x. Use O to find the eigenpairs of A.

c) across the line y = (−3/4)x. Use O to find the eigenpairs of A.

d) across the line y = (a/b)x, where a, b are arbitrary real numbers with b , 0.

1.48

a) Write a 3-by-3 matrix A whose action on R3 is to reflect across the plane x = 0. That
is, for each v ∈ R3, Av is the reflection of v across x = 0. Use O to find the
eigenpairs of A.

b) Write a 3-by-3 matrix A whose action onR3 is to reflect across the plane y = x. (Hint:
Your answer should be somehow related to your answer to part (b) of Exercise 1.47.)
Use O to find the eigenpairs of A.

c) Suppose P is a plane in 3D space containing the origin, and n is a normal vector to
P. What, in general, can you say about the eigenpairs of a matrix A whose action on
R3 is to reflect points across the plane P?

1.49

164

1.7 Linear Independence and Matrix Rank

a) Consider a coordinate axes system whose origin is always fixed at the Earth’s center,
and whose positive z-axis always passes through the North Pole. While the positive
x- and y- axes always pass through the Equator, the rotation of the Earth causes the
points of intersection to change, cycling back every 24 hours. Determine a 3-by-3
matrix A so that, given any v ∈ R3 that specifies the current location of a point on (or
in) the Earth relative to this coordinate system, Av is the location of this same point
in 3 hours.

b) Repeat the exerise, but now assuming that, in every 3-hour period, the poles are 1%
farther from the origin than they were before.

1.50 When connected in the order given, the points (0, 0), (0.5, 0), (0.5, 4.5), (4, 4.5), (4, 5),
(0.5, 5), (0.5, 7.5), (5.5, 7.5), (5.5, 8), (0, 8) and (0, 0) form the letter ‘F’, lying in Quadrant I
with the bottom of the stem located at the origin.

a) Give O commands that produce a plot of the letter with the proper aspect.
(Include among them the command you use to store the points, doing so not storing
the points themselves, but their corresponding homogeneous coordinates, storing
them as hPts.)

b) What 3-by-3 matrix would suffice, via matrix multiplication, to translate the letter
to Quadrant III, with its top rightmost point at the origin? Give O commands
that carry out this transformation on hPts and produce the plot of the letter in its
new position.

c) What 3-by-3 matrix would suffice, via matrix multiplication, to rotate the letter about
its effective center (the point (2.75, 4)), so that it still lies entirely in Quadrant I, but
is now upside down? Give O commands that carry out this transformation on
hPts and produce the plot of the letter in its new position.

d) Extract the original points from their homogeneous coordinates with the command

octave-3.0.0:31> pts = hPts(1:2,:);

Now consider 2-by-2 matrices of the form

A =

[
1 c
0 1

]
.

Choose several different values of c, run the command

octave-3.0.0:32> chpts = A*pts;

and observe the effect by plotting the altered points (found in chpts). These matrices
are called shear matrices. For each A you try, find the eigenpairs of A. Summarize
your observations about the effect of shear matrices on the letter, and what you note
about the eigenpairs.

165

1 Solving Linear Systems of Equations

1.51

a) Suppose D is a diagonal matrix with entries along the main diagonal d1, . . . , dn.
Suppose also that A, S are n-by-n matrices with S nonsingular, such that the equation
AS = SD is satisfied. If S j denotes the jth column (a vector in Rn) of S, show that
each (d j,S j) is an eigenpair of A.

b) Find a matrix A for which (4, 1, 0,−1) is an eigenvector corresponding to eigenvalue
(−1), (1, 2, 1, 1) is an eigenvector corresponding to eigenvalue 2, and both (1,−1, 3, 3)
and (2,−1, 1, 2) are eigenvectors corresponding to eigenvalue 1. (You may use O
for this part, supplying your code and using commentary in identifying the result.)

c) Show that, under the conditions of part (a), det(A) =
∏n

j=1 d j. That is, det(A) is equal
to the product of the eigenvalues of A. (This result is, in fact, true even for square
matrices A which do not have this form.)

d) Two square matrices A, B are said to be similar if there is an invertible matrix P for
which B = P−1AP. Show that, if λ is an eigenvalue of B, then it is also an eigenvalue
of A.

1.52 Prove that if any diagonal element (i.e., a, d and f) of

A =

a b c
0 d e
0 0 f

is zero, then the rows are linearly dependent.

1.53 Is it true that if v1, v2, v3 are linearly independent, then also the vectors w1 = v1 + v2,
w2 = v1 + v3, w3 = v2 + v3 are linearly independent? Hint: Start with some combination
c1w1 + c2w2 + c3w3 = 0, and determine which c j are possible.

1.54 Suppose A is an m-by-n matrix. Explain why it is not possible for rank(A) to exceed
m. Deduce that rank(A) cannot exceed the minimum value of m and n.

1.55 Give an example of an m-by-n matrix A for which you can tell at a glance Ax = b
is not always consistent—that is, there are right-hand side vectors b ∈ Rm for which no
solution exists.

1.56 Let

A :=

1 −2 1 1 2
−1 3 0 2 −2
0 1 1 3 4
1 2 5 13 5

 .

166

1.7 Linear Independence and Matrix Rank

a) Use Gaussian elimination (you may use simpleGE, or the (better) alternative called
rref()) to find the rank and nullity of A.

b) Find a basis for the column space of A.

c) State another way to phrase the question of part (b) that employs the words “linear
independent” and “span”.

1.57 Suppose A is an m-by-n matrix, with m > n and null(A) = {0}.

a) Are the column vectors of A linearly independent? How do you know?

b) How many solutions are there to the matrix equation Ax = b if b ∈ ran(A)?

c) How many solutions are there to the matrix equation Ax = b if b < ran(A)?

1.58 Can a nonzero matrix (i.e., one not completely full of zero entries) be of rank 0?
Explain.

1.59 We know that, for an m-by-1 vector u and 1-by-n matrix (row vector) v, the matrix
product uv is defined, yielding an m-by-n matrix sometimes referred to as the outer
product of u and v. In Section 1.2 we called this product a rank-one matrix. Explain why
this term is appropriate.

1.60 Determine whether the given set of vectors is linearly independent.

a) S = {(3, 2, 5, 1,−2), (5, 5,−2, 0, 1), (2, 2, 6,−1,−1), (0, 1, 4, 1, 2)}

b) S = {(3, 6, 4, 1), (−1,−1, 2, 5), (2, 1, 3, 0), (6, 13, 0,−8)}

1.61 For the matrix A, find its nullspace: A =

3 6 4 1
−1 −1 2 5
2 1 3 0
6 13 0 −8

1.62 O has a command rank() which returns a number it thinks equals the rank of
a matrix. (Type help rank to see how to use it.) The command can be used on square and
non-square matrices alike. Use O commands to find both the rank and determinant
of the following square matrices:

167

1 Solving Linear Systems of Equations

(i)

2 5 −5
7 0 7
−4 7 0

(ii)

−10 0 5 7
−5 3 −3 9
7 7 −1 6
0 −9 −3 1

(iii)

3 3 0 −1 3
−4 −2 1 1 5
1 −1 −4 −5 −2
4 3 −3 1 0
1 5 5 4 1

(iv)

−6 5 6 −7 −2
4 −7 −2 5 5
−2 −2 4 −2 3
−10 12 8 −12 −7
−8 3 10 −9 1

Using these results, write a statement that describes, for square matrices, what knowledge
of one of these numbers (the rank or determinant) tells you about the other.

1.63 Theorem 1.7.5 tells of many things one can know about a square matrix when is
has full rank—that is, rank(A) = n for a matrix A with n columns. Look back through
that theorem, and determine which of the conditions (i)–(vii) still hold true when A is
non-square but has full rank.

168

