Lock5 with R: A companion to Unlocking the Power of Data

Randall Pruim and Lana Park

September 4, 2014

Contents

Introduction to R and Statistics

0.1 Getting Started With RStudio

Logging in and changing your password

You should change your password. Here's how.

- 1. From the Tools menu, select Shell
- 2. Type yppasswd
- 3. You will be prompted for your old password, then your new password twice.
- 4. If you give a sufficiently strong new password (at least six letters, at least one capital, etc.) you will receive notice that your password has been reset. If there was a problem, you will see a message about it and can try again.
- 5. Once you have reset your password, click on Close to close the shell and get back to RStudio.

Loading packages

R is divided up into packages. A few of these are loaded every time you run R, but most have to be selected. This way you only have as much of R as you need.

In the Packages tab, check the boxes next to the following packages to load them:

- Lock5withR (a package for our text book)
- mosaic (a package from Project MOSAIC, should autoload on the server)
- mosaicData (Project MOSAIC data sets)

Using R as a calculator

Notice that RStudio divides its world into four panels. Several of the panels are further subdivided into multiple tabs. The console panel is where we type commands that R will execute.

R can be used as a calculator. Try typing the following commands in the console panel.

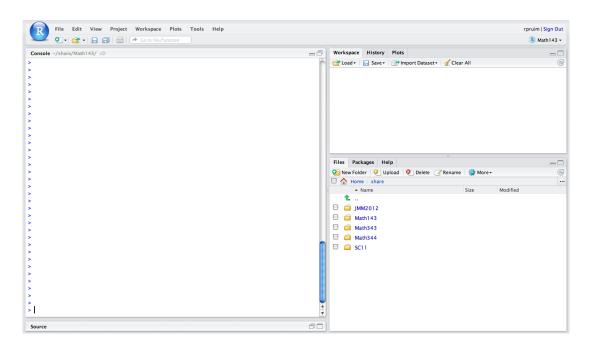


Figure 1: Welcome to RStudio.

5 + 3	arithmetic2
[1] 8	
15.3 * 23.4	
[1] 358	
sqrt(16)	
[1] 4	

You can save values to named variables for later reuse

```
variables2
product = 15.3 * 23.4  # save result
product  # show the result
[1] 358
product <- 15.3 * 23.4  # <- is assignment operator, same as =
[1] 358</pre>
```

```
15.3 * 23.4 -> newproduct # -> assigns to the right
newproduct
[1] 358
.5 * product # half of the product
[1] 179
log(product) # (natural) log of the product
[1] 5.881
log10(product) # base 10 log of the product
[1] 2.554
log(product,base=2) # base 2 log of the product
[1] 8.484
```

The semi-colon can be used to place multiple commands on one line. One frequent use of this is to save and print a value all in one go:

```
variables-semi2
15.3 * 23.4 -> product; product  # save result and show it
[1] 358
```

0.2 Getting Help in RStudio

The RStudio help system

There are several ways to get RStudio to help you when you forget something. Most objects in packages have help files that you can access by typing something like:

?bargraph
?histogram
?HELPrct

You can search the help system using

help.search("Grand Rapids") # Does R know anything about Grand Rapids?

7

help-questionmark

help-GR

error-message

This can be useful if you don't know the name of the function or data set you are looking for.

History

If you know you have done something before, but can't remember how, you can search your history. The history tab shows a list of recently executed commands. There is also a search bar to help you find things from longer ago.

Error messages

When things go wrong, R tries to help you out by providing an error message. If you can't make sense of the message, you can try copying and pasting your command and the error message and sending to me in an email. One common error message is illustrated below.

```
fred <- 23
frd
Error: object 'frd' not found</pre>
```

The object frd is not found because it was mistyped. It should have been fred. If you see an "object not found" message, check your typing and check to make sure that the necessary packages have been loaded.

0.3 Four Things to Know About R

Computers are great for doing complicated computations quickly, but you have to speak to them on their terms. Here are few things that will help you communicate with R.

1. R is case-sensitive

If you mis-capitalize something in R it won't do what you want.

2. Functions in R use the following syntax:

functionname(argument1, argument2, ...)

- The arguments are always *surrounded by (round) parentheses* and *separated by commas*. Some functions (like data()) have no required arguments, but you still need the parentheses.
- If you type a function name without the parentheses, you will see the *code* for that function which probably isn't what you want at this point.
- 3. TAB completion and arrows can improve typing speed and accuracy.

If you begin a command and hit the TAB key, R will show you a list of possible ways to complete the command. If you hit TAB after the opening parenthesis of a function, it will show you the list of arguments it expects. The up and down arrows can be used to retrieve past commands.

4. If you get into some sort of mess typing (usually indicated by extra '+' signs along the left edge), you can hit the escape key to get back to a clean prompt.

function-syntax

0.4 Data in R

Data in Packages

Most often, data sets in R are stored in a structure called a **data frame**. There are a number of data sets built into R and many more that come in various add on packages. The Lock5withR package, for example, contains all the data sets from our text book. In the book, data set names are printed in bold text.

You can see a list of them using

```
data(package = "Lock5withR")
```

You can find a longer list of all data sets available in any loaded package using

data()

The HELPrct data set

The HELPrct data frame from the mosaic package contains data from the Health Evaluation and Linkage to Primary Care randomized clinical trial. You can find out more about the study and the data in this data frame by typing

?HELPrct

Among other things, this will tell us something about the subjects in this study:

Eligible subjects were adults, who spoke Spanish or English, reported alcohol, heroin or cocaine as their first or second drug of choice, resided in proximity to the primary care clinic to which they would be referred or were homeless. Patients with established primary care relationships they planned to continue, significant dementia, specific plans to leave the Boston area that would prevent research participation, failure to provide contact information for tracking purposes, or pregnancy were excluded.

Subjects were interviewed at baseline during their detoxification stay and follow-up interviews were undertaken every 6 months for 2 years.

It is often handy to look at the first few rows of a data frame. It will show you the names of the variables and the kind of data in them:

head(HELPrct)

Error: object 'HELPrct' not found

That's plenty of variables to get us started with exploration of data.

datasets

HELPrcthelp

headHELP

From Excel or Google to R

So far we have been using data that lives in R packages. This has allowed us to focus on things like how to make plots and create numerical summaries without worrying too much about the data themselves. But if you are going to do any of your own statistical analyses, then you will need to import your own data into R and have some tools for manipulating the data once it is there.

Excel or Google spreadsheets are reasonable tools for entering (small) data sets by hand and doing basic data tidying (organizing) and cleaning (correcting errors). This section describes how to get data from a spreadsheet into R.

While you are still in the spreadsheet

If you are creating your own data in a spreadsheet with the intent of bringing into R (or some other statistical package) for analysis, it is important that you design your spreadsheet appropriately. For most data sets this will mean

1. The first row should contain variables names.

These should be names that will work well in R. This usually means they will be relatively short and avoid spaces and punctuation.

- 2. Each additional row corresponds to a case/observational unit.
- 3. Each column corresponds to a variable.
- 4. There is **nothing** else in the spreadsheet.

Do not include notes to yourself, plots, numerical summaries, etc. These things can be kept in a separate worksheet, another file, your lab notebook, just not in the worksheet you are going to export.

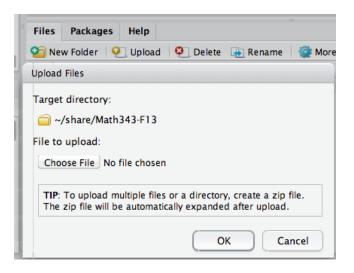
Exporting to csv

The comma separated values (csv) format has become a standard way of transferring data between programs. Both Google and Excel can export to this format, and R can import from this format. Once your dataare ready to go, export them to csv. Give the file a good name, and remember where you have put it.

Uploading the data (RStudio server only)

To get the data from your computer onto the server, you need to **upload** the data. (You can skip this step if you are working with a local copy of RStudio.) Uploading transfers a copy of your data from your computer onto the server (the "cloud"). This is like uploading pictures to Facebook so you can later use them in posts or as a cover photo or tag your friends or whatever else once the photo is on Facebook.

To upload the data, go to the Files tab and click on Upload:



A window will pop up prompting you to browse to the file's location on your computer. Choose the file and it will upload to the server. You should see it appear in your file menu.

Importing the data into R

Now that the file is on the server, you can import it into R. This takes place in the **Environment** tab. Once there, choose **Import Dataset** and then **From Text File...**.

Environment	History	Plots
🞯 🔒 🖻	Import Data	aset 🕶 🎻 Clear 🛛 🚱
Global	From Tex	kt File
Data	From Wel	b URL

The instructions are pretty clear from there, but here are some things to watch for:

- The default name for the data set is taken from the file name. If you used a very long file name, you will probably want to shorten this down. (But don't call it Data or something too generic either.) If the data are from the asters you have been tagging, perhaps call it Asters. If you are working with multiple data sets that deal with asters, add a bit more detail, perhaps Asters01 or some such thing.
- Be sure to select to use your first line as variable names (Heading = Yes).

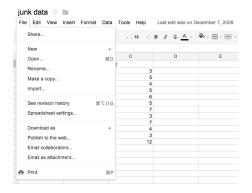
	Input File		
Asters01	Number S	pecies (S. Cordifolium or S. Urophyllum),1. Avera	ae a
		olium,27,0.535,1,,1.76,0.67	.g. u
leading 💿 Yes 🔘 No		olium,,,0.66,,1.58,1.07	
		olium,,,1.42,,1.68,3.30	
Separator Comma 🗘		olium,,,1,,1.51,1.43	
Decimal Period		olium,,,1.17,,1.42,1.58	
Period -		olium,,,1,,1.82,3.30	
Quote Double quote (") 🗘		olium,51.3,0.472,1.83,,1.55,3.30 olium,.,1,,1.7,1.17	
		olium,,,1,,1.53,2.00	
		folium,1.16,.1.07	
		folium,,,0.75,,1.55,1.13	
		folium,,,1.17,,2.47,1.70	
	Data Fran	10	
	Number	SpeciesSCordifolium.or.SUrophyllum.	V.4
	1	Cordifolium	X1 27
	Z	Cordifolium	21
	3	Cordifolium	
	4	Cordifolium	
	5	Cordifolium	
	6	Cordifolium	
	7	Cordifolium	51
	8	Cordifolium	
	9	Cordifolium	
	10	Cordifolium	
		Cordifolium	
	11 12	Cordifolium	

The data set should now be ready for use in R.

A shortcut for Google Spreadsheets

You can avoid all the uploading step if you use a Google spreadsheet and import directly from Google. To do this, you must first **publish** your Google spreadsheet, and then copy the csv URL from Google. Here's how.

1. In the file menu select **Publish**



2. In the publish menu, select **Start Publishing**

	s to publish	
	All sheets \$	
6	Automatically republish when changes are made	
	Start publishing Republish now	
rt a	link to the published data Web page \$	
	All shoots 🗢	
	All cells	

×

×

3. Now choose the **CSV** file format.

Publish	to the web		
Sheets to	publish		
All	sheets ≑		
√A	utomatically republish when change	es are made	
Sto	p publishing Republish now	Published on Sep 1	8, 2013, 9:22 PM
Note	e: Publishing a doc does not affect its visit	oility option. Learn more	•
Get a lini	to the published data		1
	Web page		
	HTML to embed in a page		
	CSV (comma-separated values)		
	TXT (Plain text)		
1	PDF (Adobe PDF)		
	ATOM		cE&output=htm
	RSS		
CI	XLS (Microsoft Excel)		
	ODS (OpenDocument spreadshee	it)	

4. Once you have done that, you can copy the URL:

All sheets \$		
Automatically re	publish when change	es are made
Stop publishing	Republish now	Published on Sep 18, 2013, 9:22 PM
a link to the public		
a link to the public CSV (comma-sepa All sheets \$		
CSV (comma-sepa		
CSV (comma-sepa All sheets ¢ All cells https://docs.g	rated values) \$	heet/pub?

5. In R, use the fectchGoogle() function to load the data into R:

# The URL will be really long and ugly	
Asters3 <- fetchGoogle(
"https://docs.google.com/spreadsheet/pub?key=0ApQwsmr3d8V2cmprN01YNnNqMEkxbH1NMHBQWmx0VkE&output	=csv")

Don't forget the quotation marks! (They won't be part of what you copy from Google.)

Using R commands to read a data file

Even if you primarily use the RStudio interface to import data, it is good to know about the command line methods since these are required to import data into scripts, RMarkdown, and Rnw files. CSV files (and a few other types of files as well) can be read with

```
someData <- read.file("file.csv")</pre>
```

This can be used to read data directly from a URL as well. For example, here is some data from the US Census Bureau:

```
Population <- read.file(</pre>
  "https://www.census.gov/popest/data/national/totals/2012/files/NST_EST2012_ALLDATA.csv",
               # don't convert strings to factors
  as.is=TRUE
dim(Population)
[1] 57 46
head(Population, 4)
  Sumlev Region Division State
                                              Name CENSUS2010POP ESTIMATESBASE2010
      10
               0
                        0
                                                                           308747508
1
                               0
                                    United States
                                                        308745538
2
      20
                        0
                               O Northeast Region
               1
                                                         55317240
                                                                            55317245
3
               2
      20
                        0
                               0
                                   Midwest Region
                                                         66927001
                                                                            66927489
4
      20
               3
                        0
                               0
                                     South Region
                                                        114555744
                                                                           114557147
  POPESTIMATE2010 POPESTIMATE2011 POPESTIMATE2012 NPOPCHG 2010 NPOPCHG 2011 NPOPCHG 2012
        309326225
                         311587816
                                           313914040
                                                            578717
                                                                         2261591
                                                                                       2326224
1
2
                                                             59681
         55376926
                          55597646
                                            55761091
                                                                          220720
                                                                                        163445
3
                                                             44646
         66972135
                          67145089
                                            67316297
                                                                          172954
                                                                                        171208
                                                            296653
4
        114853800
                          116022230
                                           117257221
                                                                         1168430
                                                                                       1234991
  BIRTHS2010 BIRTHS2011 BIRTHS2012 DEATHS2010 DEATHS2011 DEATHS2012 NATURALINC2010
1
      987836
                 3977039
                             3953593
                                          598716
                                                     2490976
                                                                2513173
                                                                                  389120
2
      160353
                  644224
                              631961
                                          108678
                                                     465661
                                                                 466970
                                                                                   51675
3
      210660
                  839312
                                          141184
                                                     580842
                                                                 580718
                                                                                   69476
                              825776
                                                                                  137779
4
      373379
                 1503557
                             1510568
                                          235600
                                                     956673
                                                                 970844
  NATURALINC2011 NATURALINC2012 INTERNATIONALMIG2010 INTERNATIONALMIG2011
1
         1486063
                          1440420
                                                 189597
                                                                        775528
2
          178563
                           164991
                                                  48282
                                                                        211281
3
                           245058
                                                  24794
                                                                        100624
          258470
4
          546884
                           539724
                                                  71591
                                                                        282102
  INTERNATIONALMIG2012 DOMESTICMIG2010 DOMESTICMIG2011 DOMESTICMIG2012 NETMIG2010
                 885804
                                       0
                                                                                 189597
                                                         0
                                                                          0
1
2
                 221546
                                  -38396
                                                                    -220968
                                                                                   9886
                                                   -161531
3
                 111790
                                  -49082
                                                  -184696
                                                                    -185118
                                                                                 -24288
4
                 337769
                                   86302
                                                   325546
                                                                     353879
                                                                                 157893
  NETMIG2011 NETMIG2012 RESIDUAL2010 RESIDUAL2011 RESIDUAL2012 Rbirth2011 Rbirth2012
      775528
                  885804
                                     0
                                                   0
                                                                 0
                                                                         12.81
                                                                                     12.64
1
2
       49750
                                                                         11.61
                                                                                     11.35
                     578
                                 -1880
                                               -7593
                                                             -2124
3
      -84072
                                               -1444
                                                              -522
                                                                         12.52
                                                                                     12.28
                  -73328
                                  -542
4
      607648
                  691648
                                   981
                                               13898
                                                              3619
                                                                         13.02
                                                                                     12.95
  Rdeath2011 Rdeath2012 RNATURALINC2011 RNATURALINC2012 RINTERNATIONALMIG2011
                   8.036
                                                     4.606
       8.024
                                    4.787
                                                                             2.498
1
2
       8.392
                   8.387
                                    3.218
                                                     2.963
                                                                             3.808
3
       8.662
                   8.638
                                    3.854
                                                     3.645
                                                                             1.501
       8.287
                                                                             2.444
4
                   8.323
                                    4.737
                                                     4.627
  RINTERNATIONALMIG2012 RDOMESTICMIG2011 RDOMESTICMIG2012 Rnetmig2011 Rnetmig2012
```

1	2.832	0.000	0.000	2.4980	2.83230
2	3.979	-2.911	-3.969	0.8966	0.01038
3	1.663	-2.754	-2.753	-1.2537	-1.09069
4	2.896	2.820	3.034	5.2638	5.92978

Many web sites provide data in csv format. Here some examples:

- http://www.census.gov/ (Census Bureau data)
- http://www.ncdc.noaa.gov/data-access (NOAA Weather and climate data)
- http://www.gapminder.org/data/ (Gapminder data)
- http://introcs.cs.princeton.edu/java/data/ has a number of data sets, some in csv format, collected from other places on the internet.
- http://www.exploredata.net/Downloads has data from WHO, a genome expression study, and a microbiome study.

But be aware that some of these files might need to be cleaned up a bit before they are usable for statistics. Also, some internet files are very large and may take a while to download. Many sites will give an indication of the size of the data set so you know what you are in for. The better sites will include links to a code book (a description of all the variables, units used, how and when the data were collected, and any other information relevant to interpreting the data). Such a document is available for the population data loaded above. You can find it at http://www.census.gov/popest/data/national/totals/2012/files/NST-EST2012-alldata.pdf

There are similar functions for reading various other sorts of data. There is even a read.xls() function in the gdata package that can read directly from Excel spreadsheets without having to first export them to csv format. There are also utilities for converting to and from native data formats of other statistical programs (like SAS, SPSS, etc.). But since these typically all know how to read and write csv files, learning a workflow that goes through CSV is a broadly applicable skill.

Missing Data

The na.strings argument can be used to specify codes for missing values. The following can be useful, for example:

```
someData <- read.file('file.csv',
    na.strings=c('NA','','.','-','na'))</pre>
```

because SAS uses a period (.) to code missing data, and some csv exporters use '-'. By default R reads these as string data, which forces the entire variable to be of character type instead of numeric.

By default, R will recode character data as a factor. If you prefer to leave such variables in character format, you can use

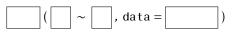
```
somData <- read.file('file.csv',
    na.strings=c('NA','','.','-','na'),
    stringsAsFactors=FALSE)</pre>
```

1

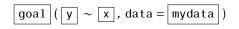
¹ Even finer control can be obtained by manually setting the class (type) used for each column in the file. In addition, this speeds up the reading of the file. For a csv file with four columns, we can declare them to be of class integer, numeric, character, and factor with the

0.5 The Most Important Template

Most of what we will do in this chapter makes use of a single R template:



It is useful if we name the slots in this template:



Actually, there are some variations on this template:

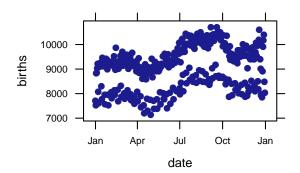
```
### Simpler version -- for just one variable
goal(~x, data = mydata)
### Fancier version:
goal(y ~ x | z, data = mydata)
### Unified version:
goal(formula, data = mydata)
```

To use the template (we'll call it the formula template because there is always a formula involved), you just need to know what goes in each slot. This can be determined by asking yourself two questions:

- 1. What do you want R to do?
 - this determines what function to use (goal).
- 2. What must R know to do that?
 - this determines the inputs to the function
 - for describing data, must must identify which data frame and which variable(s).

Let's try an example. Suppose we want to make this plot

Loading required package: mosaicData



following command.

someData <- read.file('file.csv', na.strings=c('NA','','.','-','na'), colClasses=c('integer','character'))</pre>

1. What is our goal?

Our goal is to make a scatter plot. The function that does this is called xyplot(). That takes care of the first slot.

2. What does R need to know to do this?

It needs to know what data set to use, and which varialbes to use on the x and y axes. These data are in the Births78 data set in the mosaic package. Let's take a quick look at the data:

```
require(mosaicData) # load the package that contains our data set
head(Births78)
        date births dayofyear
1 1978-01-01
               7701
                             1
2 1978-01-02
               7527
                             2
                             3
3 1978-01-03
               8825
                             4
4 1978-01-04
               8859
                             5
5 1978-01-05
               9043
6 1978-01-06
               9208
                             6
```

We want the date on the x-axis and the number of births on the y axis, so the full command is

```
xyplot(births ~ date, data = Births78)
```

setting 10000 9000 8000 Jan Apr Jul Oct Jan date

This same template can be used for a wide variety of graphical and numerical summaries. For example, to compute the mean number of births, we can change xyplot() to mean() and provide births but not date:

mean(~births, data = Births78)

Notice that when there is only one variable, it goes on the right side of the wiggle (). We'll see more examples of this template as we go along.

0.6 Manipulating your data

Creating a subset

[1] 9132

The filter() command can be used to create subsets. The population data set we downloaded has population for states and various other regions. If we just want the states, we can select the items where the State variable is greater than 0. (Notice the double equals for testing equality.)

births-head

births-scatterplot

filter

extra-states

select

States <- filter(Population, State > 0)
dim(States)

[1] 52 46

That two states too many. We can scan the list to see what else is in there.

States\$name

NULL

The two extras are Washington, DC and Peurto Rico.

Choosing specific columns

filter() chooses rows from a data frame. select() selects columns. This can be handy if you have a data set with many more variables than you are interested in. Let's pick just a handful from the Population data set.

States2 <- select(States, Name, POPESTIMATE2010, POPESTIMATE2011, POPESTIMATE2012)</pre>

Dropping Variables

Sometimes it is easier to think about dropping variables. We can use select() for this as well:

iris2 <- select(iris, -Sepal.Width, -Sepal.Length) # the minus sign means drop head(iris2, 3)

Petal.Length Petal.Width Species 1 1.4 0.2 setosa 2 1.4 0.2 setosa 3 1.3 0.2 setosa

Creating new variables

We can add a new variable to data set using mutate():

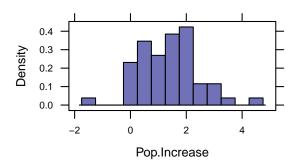
head(iris,3)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa

iris3	<- mutate(i	ris,						
		Sepal.Ratio	= Sepal.Leng	gth / Sepa	l.Width,			
		Petal.Ratio	= Petal.Leng	gth / Peta	l.Width)			
head(i	ris3, <mark>3</mark>)							
							_	
Sepa	ıl.Length Sep	al.Width Peta	1.Length Peta	al.Width S	pecies Sep	pal.Ratio Peta	al.Ratio	
1	5.1	3.5	1.4	0.2	setosa	1.457	7.0	
2	4.9	3.0	1.4	0.2	setosa	1.633	7.0	
3	4.7	3.2	1.3	0.2	setosa	1.469	6.5	
States	3 <- mutate(States2,						
		Pop.Increas	e = 100 * (PC	OPESTIMATE	2012 - POP	PESTIMATE2010)/POPESTIMATE	2010)
histog	<mark>ram</mark> (~ Pop.I	ncrease, data	=States3, wid	dth= <mark>0.5</mark> ,				
-		moin	-"% Dopulati	an increas	0 (2010 ±	2012)")		

main="% Population increase (2010 to 2012)")

% Population increase (2010 to 2012)



Generally, it is a good idea to keep raw data (like Sepal.Length and Sepal.Width in your data file, but let R do the computation of derived variables for you. Among other advantages, if you ever fix an error in a Sepal.Length measurement, you don't have to worry about remembering to also recompute the ratio. Futhermore, your R code documents how the derived value was computed.

Saving Data

write.csv() can be used to save data from R into csv formatted files. This can be useful for exporting to some other program.

write.csv(iris3, "iris3.csv")

Data can also be saved in native R format. Saving data sets (and other R objects) using save() has some advantages over other file formats:

- Complete information about the objects is saved, including attributes.
- Data saved this way takes less space and loads much more quickly.
- Multiple objects can be saved to and loaded from a single file.

The downside is that these files are only readable in R.

writingData

savingData

save(iris3, file = "iris3.rda") # the traditional file extension is rda for R native data. load("iris3.rda") # loads previously saved data

For more on importing and exporting data, especially from other formats, see the *R Data Import/Export* manual available on CRAN.

Merging datasets

The fusion1 data frame in the fastR package contains genotype information for a SNP (single nucleotide polymorphism) in the gene *TCF7L2*. The pheno data frame contains phenotypes (including type 2 diabetes case/control status) for an intersecting set of individuals. We can merge these together to explore the association between genotypes and phenotypes using merge().

```
require(fastR)
head(fusion1, 3)
           marker markerID allele1 allele2 genotype Adose Cdose Gdose Tdose
     id
1 9735 RS12255372
                         1
                                 3
                                         3
                                                 GG
                                                        0
                                                              0
                                                                    2
                                                                          0
2 10158 RS12255372
                         1
                                 3
                                         3
                                                 GG
                                                        0
                                                              0
                                                                    2
                                                                          0
                                                 GT
3 9380 RS12255372
                         1
                                 3
                                         4
                                                        0
                                                              0
                                                                    1
                                                                          1
head(pheno, 3)
          t2d
    id
                          age smoker chol waist weight height
                bmi sex
                                                                 whr sbp dbp
1 1002
         case 32.86 F 70.76 former 4.57 112.0 85.6 161.4 0.9868 135 77
2 1009
         case 27.39 F 53.92 never 7.32 93.5
                                                 77.4 168.1 0.9397 158 88
3 1012 control 30.47 M 53.86 former 5.02 104.0 94.6 176.2 0.9327 143 89
# merge fusion1 and pheno keeping only id's that are in both
fusion1m <- merge(fusion1, pheno, by.x = "id", by.y = "id", all.x = FALSE, all.y = FALSE)
head(fusion1m, 3)
          marker markerID allele1 allele2 genotype Adose Cdose Gdose Tdose
    id
                                                                               t2d
                                                                                     bmi
1 1002 RS12255372
                        1
                                3
                                        3
                                                GG
                                                       0
                                                             0
                                                                   2
                                                                         0
                                                                              case 32.86
                                                                   2
2 1009 RS12255372
                        1
                                3
                                        3
                                                GG
                                                       0
                                                             0
                                                                         0
                                                                              case 27.39
3 1012 RS12255372
                                                             0
                                                                   2
                        1
                                3
                                        3
                                                GG
                                                       0
                                                                         0 control 30.47
 sex
       age smoker chol waist weight height
                                              whr sbp dbp
1 F 70.76 former 4.57 112.0 85.6 161.4 0.9868 135 77
2 F 53.92 never 7.32 93.5
                               77.4 168.1 0.9397 158 88
3 M 53.86 former 5.02 104.0 94.6 176.2 0.9327 143 89
```

In this case, since the values are the same for each data frame, we could collapse by.x and by.y to by and collapse all.x and all.y to all. The first of these specifies which column(s) to use to identify matching cases. The second indicates whether cases in one data frame that do not appear in the other should be kept (TRUE) or dropped (filling in NA as needed) or dropped from the merged data frame.

Now we are ready to begin our analysis.

tally(~t2d + genotype, fusion1m)

Q	genotype						
t2d	GG	GT	TT				
case	737	375	48				
control	835	309	27				

0.7 Using R Markdown

Although you can export plots from RStudio for use in other applications, there is anotherway of preparing documents that has many advantages. RStudio provides several ways to create documents that include text, R code, R output, graphics, even mathematical notation all in one document. The simplest of these is R Markdown.

To create a new R Markdown document, go to "File", "New", then "R Markdown":

File	Edit	Code	View	Plots	Session
🤏 M	New File New Proje Open File Recent Fil	жо		R Script Text File Rd File C/C++ File	
R I S	Open Proj Recent Pro Jave Jave As		انی انگ انگ		
	ave All Print		Γ		
	Close Close All Close Proj				
	Quit RStu				

When you do this, a file editing pane will open with a template inserted. If you click on "Knit HTML", RStudio will turn this into an HTML file and display it for you. Give it a try. You will be asked to name your file if you haven't already done so. If you are using the RStudio server in a browser, then your file will live on the server ("in the cloud") rather than on your computer.

If you look at the template file you will see that the file has two kinds of sections. Some of this file is just normal text (with some extra symbols to make things bold, add in headings, etc.) You can get a list of all of these mark up options by selecting the "Mardown Quick Reference" in the question mark menu.

The second type of section is an R code chunk. These are colored differently to make them easier to see. You can insert a new code chunk by selecting "Insert Chunk" from the "Chunks" menu:

	📑 Run 📑 🖸	Chunks +
	🕸 Insert Chunk	7 7 81
1	Jump To	<u>ት</u> ℃₿J
	Run Current Chunk	∵≋c
	Run Next Chunk	٦СЖN
h.	Run All	₹₩R

(You can also type ```{r} to begin and ``` to end the code chunk if you would rather type.) You can put any R code in these code chunks and the results (text output or graphics) as well as the R code will be displayed in your HTML file.

There are options to do things like (a) run R code without displayng it, (b) run R code without displaying the output, (c) controling size of plots, etc., etc. But for starting out, this is really all you need to know.

R Markdown files must be self-contained

R Markdown files do not have access to things you have done in your console. (This is good, else your document would change based on things not in the file.) This means that you must explicitly load data, and require packages *in the R Markdown file* in order to use them. In this class, this means that most of your R Markdown files will have a chunk near the beginning that includes

```
require(mosaic) # load the mosaic package
require(Lock5withR) # get data sets from the book
```

Printing your document

The preview window has an icon that looks like an arrow pointing at a window. If you click on that the document will open in a regular browser window. From there you can use your browser's print features to print the document.

0.8 Statistics: Answering Questions With Data

This is a course primarily about statistics, but what exactly is *statistics*? In other words, what is this course about?²

Here are some definitions of statistics from other people:

 $^{^{2}}$ As we will see, the words *statistic* and *statistics* get used in more than one way. More on that later.

- a collection of procedures and principles for gaining information in order to make decisions when faced with uncertainty (J. Utts [?]),
- a way of taming uncertainty, of turning raw data into arguments that can resolve profound questions (T. Amabile [?]),
- the science of drawing conclusions from data with the aid of the mathematics of probability (S. Garfunkel [?]),
- the explanation of variation in the context of what remains unexplained (D. Kaplan [?]),
- the mathematics of the collection, organization, and interpretation of numerical data, especially the analysis of a population's characteristics by inference from sampling (American Heritage Dictionary [?]).

Here's a simpler definition:

Statistics is the science of answering questions with data.

This definition gets at two important elements of the longer definitions above:

Data – the raw material

Data are the raw material for doing statistics. We will learn more about different types of data, how to collect data, and how to summarize data as we go along.

Information – the goal

The goal of doing statistics is to gain some information or to make a decision – that is, to answer some question.

Statistics is useful because it helps us answer questions like the following: ³

- Which of two treatment plans leads to the best clinical outcomes?
- Are men or women more successful at quitting smoking? And does it matter which smoking cessation program they use?
- Is my cereal company complying with regulations about the amount of cereal in its cereal boxes?

In this sense, statistics is a science – a method for obtaining new knowledge.Our simple definition is light on describing the context in which this takes place. So let's add two more important aspects of statistics.

Uncertainty - the context

The tricky thing about statistics is the uncertainty involved. If we measure one box of cereal, how do we know that all the others are similarly filled? If every box of cereal were identical and every measurement perfectly exact, then one measurement would suffice. But the boxes may differ from one another, and even if we measure the same box multiple times, we may get different answers to the question *How much cereal is in the box*?

³The opening pages of each chapter of our book include many more questions.

So we need to answer questions like *How many boxes should we measure?* and *How many times should we measure each box?* Even so, there is no answer to these questions that will give us absolute certainty. So we need to answer questions like *How sure do we need to be?*

Probability - the tool

In order to answer a question like *How sure do we need to be?*, we need some way of measuring our level of certainty. This is where mathematics enters into statistics. Probability is the area of mathematics that deals with reasoning about uncertainty.

0.9 A First Example: The Lady Tasting Tea

There is a famous story about a lady who claimed that tea with milk tasted different depending on whether the milk was added to the tea or the tea added to the milk. The story is famous because of the setting in which she made this claim. She was attending a party in Cambridge, England, in the 1920s. Also in attendance were a number of university dons and their wives. The scientists in attendance scoffed at the woman and her claim. What, after all, could be the difference?

All the scientists but one, that is. Rather than simply dismiss the woman's claim, he proposed that they decide how one should *test* the claim. The tenor of the conversation changed at this suggestion, and the scientists began to discuss how the claim should be tested. Within a few minutes cups of tea with milk had been prepared and presented to the woman for tasting.

Let's take this simple example as a prototype for a statistical study. What steps are involved?

1. Determine the question of interest.

Just what is it we want to know? It may take some effort to make a vague idea precise. The precise questions may not exactly correspond to our vague questions, and the very exercise of stating the question precisely may modify our question. Sometimes we cannot come up with any way to answer the question we really want to answer, so we have to live with some other question that is not exactly what we wanted but is something we can study and will (we hope) give us some information about our original question.

In our example this question seems fairly easy to state: Can the lady tell the difference between the two tea preparations? But we need to refine this question. For example, are we asking if she *always* correctly identifies cups of tea or merely if she does better than we could do ourselves (by guessing)?

2. Determine the **population**.

Just who or what do we want to know about? Are we only interested in this one woman or women in general or only women who claim to be able to distinguish tea preparations?

3. Select measurements.

We are going to need some data. We get our data by making some measurements. These might be physical measurements with some device (like a ruler or a scale). But there are other sorts of measurements too, like the answer to a question on a form. Sometimes it is tricky to figure out just what to measure. (How do we measure happiness or intelligence, for example?) Just how we do our measuring will have important consequences for the subsequent statistical analysis. The recorded values of these measurements are called **variables** (because the values vary from one individual to another).

In our example, a measurement may consist of recording for a given cup of tea whether the woman's claim is correct or incorrect.

4. Determine the **sample**.

Usually we cannot measure every individual in our population; we have to select some to measure. But how many and which ones? These are important questions that must be answered. Generally speaking,

bigger is better, but it is also more expensive. Moreover, no size is large enough if the sample is selected inappropriately.

Suppose we gave the lady one cup of tea. If she correctly identifies the mixing procedure, will we be convinced of her claim? She might just be guessing; so we should probably have her taste more than one cup. Will we be convinced if she correctly identifies 5 cups? 10 cups? 50 cups?

What if she makes a mistake? If we present her with 10 cups and she correctly identifies 9 of the 10, what will we conclude? A success rate of 90% is, it seems, much better than just guessing, and anyone can make a mistake now and then. But what if she correctly identifies 8 out of 10? 80 out of 100?

And how should we prepare the cups? Should we make 5 each way? Does it matter if we tell the woman that there are 5 prepared each way? Should we flip a coin to decide even if that means we might end up with 3 prepared one way and 7 the other way? Do any of these differences matter?

5. Make and record the measurements.

Once we have the design figured out, we have to do the legwork of data collection. This can be a timeconsuming and tedious process. In the case of the lady tasting tea, the scientists decided to present her with ten cups of tea which were quickly prepared. A study of public opinion may require many thousands of phone calls or personal interviews. In a laboratory setting, each measurement might be the result of a carefully performed laboratory experiment.

6. Organize the data.

Once the data have been collected, it is often necessary or useful to organize them. Data are typically stored in spreadsheets or in other formats that are convenient for processing with statistical packages. Very large data sets are often stored in databases.

Part of the organization of the data may involve producing graphical and numerical summaries of the data. These summaries may give us initial insights into our questions or help us detect errors that may have occurred to this point.

7. Draw conclusions from data.

Once the data have been collected, organized, and analyzed, we need to reach a conclusion. Do we believe the woman's claim? Or do we think she is merely guessing? How sure are we that this conclusion is correct?

Eventually we will learn a number of important and frequently used methods for drawing inferences from data. More importantly, we will learn the basic framework used for such procedures so that it should become easier and easier to learn new procedures as we become familiar with the framework.

8. Produce a report.

Typically the results of a statistical study are reported in some manner. This may be as a refereed article in an academic journal, as an internal report to a company, or as a solution to a problem on a homework assignment. These reports may themselves be further distilled into press releases, newspaper articles, advertisements, and the like. The mark of a good report is that it provides the essential information about each of the steps of the study.

As we go along, we will learn some of the standard terminology and procedures that you are likely to see in basic statistical reports and will gain a framework for learning more.

At this point, you may be wondering who the innovative scientist was and what the results of the experiment were. The scientist was R. A. Fisher, who first described this situation as a pedagogical example in his 1925 book on statistical methodology [?]. Fisher developed statistical methods that are among the most important and widely used methods to this day, and most of his applications were biological.

0.10 Coins and Cups

You might also be curious about how the experiment came out. How many cups of tea were prepared? How many did the woman correctly identify? What was the conclusion?

Fisher never says. In his book he is interested in the method, not the particular results. But let's suppose we decide to test the lady with ten cups of tea. We'll flip a coin to decide which way to prepare the cups. If we flip a head, we will pour the milk in first; if tails, we put the tea in first. Then we present the ten cups to the lady and have her state which ones she thinks were prepared each way.

It is easy to give her a score (9 out of 10, or 7 out of 10, or whatever it happens to be). It is trickier to figure out what to do with her score. Even if she is just guessing and has no idea, she could get lucky and get quite a few correct – maybe even all 10. But how likely is that?

Let's try an experiment. I'll flip 10 coins. You guess which are heads and which are tails, and we'll see how you do.

:

Comparing with your classmates, we will undoubtedly see that some of you did better and others worse.

Now let's suppose the lady gets 9 out of 10 correct. That's not perfect, but it is better than we would expect for someone who was just guessing. On the other hand, it is not impossible to get 9 out of 10 just by guessing. So here is Fisher's great idea: Let's figure out how hard it is to get 9 out of 10 by guessing. If it's not so hard to do, then perhaps that's just what happened, so we won't be too impressed with the lady's tea tasting ability. On the other hand, if it is really unusual to get 9 out of 10 correct by guessing, then we will have some evidence that she must be able to tell something.

But how do we figure out how unusual it is to get 9 out of 10 just by guessing? We'll learn another method later, but for now, let's just flip a bunch of coins and keep track. If the lady is just guessing, she might as well be flipping a coin.

So here's the plan. We'll flip 10 coins. We'll call the heads correct guesses and the tails incorrect guesses. Then we'll flip 10 more coins, and 10 more, and 10 more, and That would get pretty tedious. Fortunately, computers are good at tedious things, so we'll let the computer do the flipping for us using a tool in the mosaic package. This package is already installed in our RStudio server. If you are running your own installation of R you can install mosaic using the following command:

install.packages("mosaic")

The rflip() function can flip one coin

require(mosaic)
rflip()

Flipping 1 coin [Prob(Heads) = 0.5] ...

Н

Number of Heads: 1 [Proportion Heads: 1]

or a number of coins

rflip(10)

flip1coin

install-mosaic

flip10coins

Flipping 10 coins [Prob(Heads) = 0.5] ... ТТТНТТТТТ

Number of Heads: 1 [Proportion Heads: 0.1]

and show us the results.

Typing rflip(10) a bunch of times is almost as tedious as flipping all those coins. But it is not too hard to tell R to do() this a bunch of times.

do(2) * rflip(10)

Loading required package: parallel

n heads tails prop 1 10 3 7 0.3 2 10 5 5 0.5

Let's get R to do() it for us 10,000 times and make a table of the results.

```
flip4
results <- do(10000) * rflip(10)
table(results$heads)
  0
     1 2 3 4 5
                              6 7 8
                                               10
                                            9
     89 416 1178 2045 2388 2146 1168 457 102
  5
                                                 6
                                                                                           flip5
perctable(results$heads) # the table in percents
                    3
                              5
                                    6
                                         7
              2
                        4
                                              8
                                                     9
                                                          10
   0
        1
 0.05 0.89 4.16 11.78 20.45 23.88 21.46 11.68 4.57 1.02 0.06
proptable(results$heads) # the table in proportions (i.e., decimals)
                                           6
                                                                    10
    0
          1
                 2
                       3
                              4
                                    5
                                                7
                                                        8
                                                              9
0.0005 \ 0.0089 \ 0.0416 \ 0.1178 \ 0.2045 \ 0.2388 \ 0.2146 \ 0.1168 \ 0.0457 \ 0.0102 \ 0.0006
We could also use tally() for this.
                                                                                           tally
tally(~heads, data = results)
         2 3 4 5
  0
      1
                              6 7
                                     8
                                            9
                                                10
  5 89 416 1178 2045 2388 2146 1168 457 102
```

6

flip2

```
tally(~heads, data = results, format = "percent")
   0
         1
               2
                      3
                           4
                                  5
                                        6
                                              7
                                                    8
                                                          9
                                                               10
0.05 0.89 4.16 11.78 20.45 23.88 21.46 11.68 4.57 1.02 0.06
tally(~heads, data = results, format = "proportion")
                   2
                          3
                                 4
                                        5
                                               6
                                                      7
                                                             8
                                                                    9
                                                                          10
    0
            1
0.0005 0.0089 0.0416 0.1178 0.2045 0.2388 0.2146 0.1168 0.0457 0.0102 0.0006
```

You might be surprised to see that the number of correct guesses is exactly 5 (half of the 10 tries) only 24% of the time. But most of the results are quite close to 5 correct. 67% of the results are 4, 5, or 6, for example. And 1% of the results are between 3 and 7 (inclusive). But getting 8 correct is a bit unusual, and getting 9 or 10 correct is even more unusual.

So what do we conclude? It is possible that the lady could get 9 or 10 correct just by guessing, but it is not very likely (it only happened in about 1.1% of our simulations). So *one of two things must be true*:

- The lady got unusually "lucky", or
- The lady is not just guessing.

Although Fisher did not say how the experiment came out, others have reported that the lady correctly identified all 10 cups! [?]

This same reasoning can be applied to answer a wide range of questions that have a similar form. For example, the question of whether dogs can smell cancer could be answered essentially the same way (although it would be a bit more involved than preparing tea and presenting cups to the Lady).

Collecting Data

1.1 The Structure of Data

Cases and Variables

Data sets in R are usually stored as **data frames** in a rectangular arrangement with rows corresponding to observational units and columns corresponding to variables. A number of data sets are built into R and its packages. The package for our text is Lock5withR which comes with a number of data sets.

require(Lock5withR) # Tell R to use the package for our text book
data(StudentSurvey) # load the StudentSurvey data set

Imagine data as a 2-dimensional structure (like a spreadsheet).

- Rows correspond to **observational units** (people, animals, plants, or other objects we are collecting data about).
- Columns correspond to variables (measurements collected on each observational unit).
- At the intersection of a row and a column is the **value** of the variable for a particular observational unit.

Observational units go by many names, depending on the kind of thing being studied. Popular names include subjects, individuals, and cases. Whatever you call them, it is important that you always understand what your observational units are.

Let's take a look at the data frame for the Student Survey example in the text. If we type the name of the data set, R will display it in its entirety for us. However, StudentSurvey is a larger data set, so it is more useful to look at some sort of summary or subset of the data.

Table 1.1

Table1.1

	Year	Gender	Smoke	Awa	ard Hi	gherSAT	Exe	ercise	τv	Height	Weight	Siblings	BirthOrder
1	Senior	М	No	01ym	pic	Math		10	1	71	180	4	4
2	Sophomore	F	Yes	Acade	emy	Math		4	7	66	120	2	2
3	FirstYear	М	No	Nol	bel	Math		14	5	72	208	2	1
4	Junior	М	No	Nol	bel	Math		3	1	63	110	1	1
5	Sophomore	F	No	Nol	bel	Verbal		3	3	65	150	1	1
6	Sophomore	F	No	Nol	bel	Verbal		5	4	65	114	2	2
	VerbalSAT	MathSAT	SAT	GPA	Pulse	Piercir	ngs	Sex					
1	540	670	1210	3.13	54		0	Male					
2	520	630	1150	2.50	66		3	Female					
3	550	560) 1110	2.55	130		0	Male					
4	490	630) 1120	3.10	78		0	Male					
5	720	450) 1170	2.70	40		6	Female					
6	600	550	1150	3.20	80		4	Female					

head(StudentSurvey) # first six cases of the data set

We can easily classify variables as either **categorical** or **quantitative** by studying the result of head(), but there are some summaries of the data set which reveal such information.

<pre>str(StudentSurvey) # structure of the data set</pre>	Data1.1
<pre>'data.frame': 362 obs. of 18 variables: \$ Year : Factor w/ 5 levels ","FirstYear",: 4 5 2 3 5 5 2 5 3 2 \$ Gender : Factor w/ 2 levels "F,"M": 2 1 2 2 1 1 1 1 2 1 1 \$ Smoke : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 1 1 1 1 1 \$ Award : Factor w/ 3 levels "Academy","Nobel",: 3 1 2 2 2 2 3 3 2 2 \$ HigherSAT : Factor w/ 3 levels ","Math","Verbal": 2 2 2 2 3 3 2 2 3 2 \$ Exercise : num 10 4 14 3 3 5 10 13 3 12 \$ TV : int 1 7 5 1 3 4 10 8 6 1 \$ Height : int 71 66 72 63 65 65 66 74 61 60 \$ Weight : int 180 120 208 110 150 114 128 235 NA 115 \$ Siblings : int 4 2 2 1 1 2 1 1 2 7 \$ BirthOrder: int 4 2 1 1 1 2 1 1 2 8 \$ VerbalSAT : int 540 520 550 490 720 600 640 660 550 670 \$ MathSAT : int 670 630 560 630 450 550 680 710 550 700 \$ SAT : int 1210 1150 1110 1120 1170 1150 1320 1370 1100 1370 \$ GPA : num 3.13 2.5 2.55 3.1 2.7 3.2 2.77 3.3 2.8 3.7 \$ Pulse : int 54 66 130 78 40 80 94 77 60 94 \$ Piercings : int 0 3 0 0 6 4 8 0 7 2 \$ Sex : Factor w/ 2 levels "Female","Male": 2 1 2 2 1 1 1 2 1 1 \$ summary(StudentSurvey) # summary of each variable</pre>	
Year Gender Smoke Award HigherSAT Exercise : 2 F:169 No :319 Academy: 31 : 7 Min. : 0.00 FirstYear: 94 M:193 Yes: 43 Nobel :149 Math :205 1st Qu.: 5.00 Junior : 35 Olympic:182 Verbal:150 Median : 8.00 Senior : 36 Mean 9.05 Sophomore:195	

1st Qu.: 3.0	1st Qu.:65.0	1st Qu.:138	1st Qu.:1.00	1st Qu.:1.00	1st Qu.:550
Median : 5.0	Median :68.0	Median :155	Median :1.00	Median :2.00	Median :600
Mean : 6.5	Mean :68.4	Mean :160	Mean :1.73	Mean :1.83	Mean :594
3rd Qu.: 9.0	3rd Qu.:71.0	3rd Qu.:180	3rd Qu.:2.00	3rd Qu.:2.00	3rd Qu.:640
Max. :40.0	Max. :83.0	Max. :275	Max. :8.00	Max. :8.00	Max. :800
NA's :1	NA's :7	NA's :5		NA's :3	
MathSAT	SAT	GPA	Pulse	Piercings	Sex
Min. :400	Min. : 800	Min. :2.00	Min. : 35.0	Min. : 0.00	Female:169
1st Qu.:560	1st Qu.:1130	1st Qu.:2.90	1st Qu.: 62.0	1st Qu.: 0.00	Male :193
Median :610	Median :1200	Median :3.20	Median : 70.0	Median : 0.00	
Mean :609	Mean :1204	Mean :3.16	Mean : 69.6	Mean : 1.67	
3rd Qu.:650	3rd Qu.:1270	3rd Qu.:3.40	3rd Qu.: 77.8	3rd Qu.: 3.00	
Max. :800	Max. :1550	Max. :4.00	Max. :130.0	Max. :10.00	
		NA's :17		NA's :1	

Here are some more summaries:

```
nrow(StudentSurvey) # number of rows
[1] 362
ncol(StudentSurvey) # number of columns
[1] 18
dim(StudentSurvey) # number of rows and columns
[1] 362 18
```

Many of the datasets in R have useful help files that describe the data and explain how they were collected or give references to the original studies. You can access this information for the AllCountries data set by typing

We'll learn how to make more customized summaries (numerical and graphical) soon. For now, it is only important to observe how the organization of data in R reflects the observational units and variables in the data set.

This is important if you want to construct your own data set (in Excel or a google spreadhseet, for example) that you will later import into R. You want to be sure that the structure of your spread sheet uses rows and columns in this same way, and that you don't put any extra stuff into the spread sheet. It is a good idea to include an extra row at the top which names the variables. Take a look at Chapter 0 to learn how to get the data from Excel into R.

Categorical and Quantitative Variables

categorical variable a variable that places observational units into one of two or more categories (examples: color, sex, case/control status, species, etc.)

Data1.1b

Data1.1c

These can be further sub-divided into ordinal and nominal variables. If the categories have a natural and meaningful order, we will call them **ordered** or **ordinal** variables. Otherwise, they are **nominal** variables.

quantitative variable a variable that records measurements along some scale (examples: weight, height, age, temperature) or counts something (examples: number of siblings, number of colonies of bacteria, etc.)

Quantitative variables can be **continuous** or **discrete**. Continuous variables can (in principle) take on any real-number value in some range. Values of discrete variables are limited to some list and "in-between values" are not possible. Counts are a good example of discrete variables.

Investigating Variables and Relationships between Variables

<pre>head(AllCountries)</pre>	Data1.2
Country Code LandArea Population Energy Rural Military Health HIV Internet 1 Afghanistan AFG 652230 29.021 NA 76.0 4.4 3.7 NA 1.7 2 Albania ALB 27400 3.143 2088 53.3 NA 8.2 NA 23.9 3 Algeria ALG 2381740 34.373 37069 34.8 13.0 10.6 0.1 10.2 4 American Samoa ASA 200 0.066 NA 7.7 NA NA NA NA 5 Andorra AND 470 0.084 NA 11.1 NA 21.3 NA 70.5 6 Angola ANG 1246700 18.021 10972 43.3 NA 6.8 2.0 3.1 Developed BirthRate ElderlyPop LifeExpectancy CO2 GDP Cell Electricity 1 NA 46.5 2.2 43.9 0.02503 501.5 37.81 NA 2 1 14.6 9.3 76.6 1.31286 3678.2 141.93 1747.1 3 1 20.8 4.6 72.4 3.23296 4494.9 92.42 971.0 4 NA NA NA NA NA NA NA NA NA 5 NA 10.4 NA NA NA NA NA NA NA 6 1 42.9 2.5 47.0 1.35109 4422.5 46.69 202.2 kwhPerCap 1 <an> 2 Under 2500 3 Under 2500 4 <an> 5 NA> 6 Under 2500</an></an>	
Summary (AllCountries) Country Code LandArea Population Energy Afghanistan : 1 : 3 Min. : 2 Min. : 0.0 Min. : 159 Albania : 1 AFG : 1 1st Qu.: 10830 1st Qu.: 0.8 1st Qu.: 5252 Algeria : 1 ALB : 1 Median : 94080 Median : 5.6 Median : 17478 American Samoa: 1 ALG : 1 Mean : 608120 Mean : 31.5 Mean : 86312 Andorra : 1 AND : 1 3rd Qu.: 446300 3rd Qu.: 20.6 3rd Qu.: 52486 Angola : 1 Max. :16376870 Max. :1324.7 Max. :2283722 (Other) :207 (Other):205 NA's :1 NA's :77 <td></td>	

Min. :1.00	Min. : 8.2 M	Min. : 1.00 Mi	in. :43.9	Min. : 0.02
1st Qu.:1.00	1st Qu.:12.1	1st Qu.: 3.40 1s	st Qu.:62.8	1st Qu.: 0.62
Median :1.00	Median :19.4	Median : 5.40 Me	edian :71.9	Median : 2.74
Mean :1.76	Mean :22.0 M	Mean : 7.47 Me	ean :68.9	Mean : 5.09
3rd Qu.:3.00	3rd Qu.:28.9	3rd Qu.:11.60 31	d Qu.:76.0	3rd Qu.: 7.02
Max. :3.00	Max. :53.5 M	Max. :21.40 Ma	ax. :82.8	Max. :49.05
NA's :78	NA's :16 M	NA's :22 NA	A's :17	NA's :15
GDP	Cell	Electricity	kwhP	PerCap
Min. : 192	Min. : 1.24	4 Min. : 36	Under 2500	:73
1st Qu.: 1253	1st Qu.: 59.2	1 1st Qu.: 800	2500 - 500	0:21
Median : 4409	Median : 93.70	0 Median : 2238	Over 5000	:41
Mean : 11298	Mean : 91.09	9 Mean : 4109	NA's	:78
3rd Qu.: 12431	3rd Qu.:121.10	6 3rd Qu.: 5824		
Max. :105438	Max. :206.43	3 Max. :51259		
NA's :40	NA's :12	NA's :78		

AllCountries[86,]

Country Code LandArea Population Energy Rural Military Health HIV Internet Developed86 Iceland ISL 1002500.31752557.70.113.10.390.53BirthRate ElderlyPop LifeExpectancyCO2GDPCell Electricity kwhPerCap8615.211.781.37.02439617109.751259Over 5000

Using Data to Answer a Question

response variable a variable we are trying to predict or explain

explanatory variable a variable used to predict or explain a response variable

1.2 Sampling from a Population

Samples from Populations

population the collection of animals, plants, objects, etc. that we want to know about

sample the (smaller) set of animals, plants, objects, etc. about which we have data

parameter a number that describes a population or model.

statistic a number that describes a sample.

Much of statistics centers around this question:

What can we learn about a population from a sample?

Sampling Bias

Often we are interested in knowing (approximately) the value of some parameter. A statistic used for this purpose is called an **estimate**. For example, if you want to know the mean length of the tails of lemurs (that's

a *parameter*), you might take a sample of lemurs and measure their tails. The mean length of the tails of the lemurs in your sample is a *statistic*. It is also an *estimate*, because we use it to estimate the parameter.

Statistical estimation methods attempt to

- reduce bias, and
- increase precision.
- **bias** the systematic tendency of sample estimates to either overestimate or underestimate population parameters; that is, a *systematic tendency to be off in a particular direction*.

precision the measure of how close estimates are to the thing being estimated (called the estimand).

Simple Random Sample

Sampling is the process of selecting a sample. Statisticians use random samples

- to avoid (or at least reduce) bias, and
- so they can quantify **sampling variability** (the amount samples differ from each other), which in turn allows us to quantify precision.

The simplest kind of random sample is called a **simple random sample** (aren't statisticians clever about naming things?). A simple random sample is equivalent to putting all individuals in the population into a big hat, mixing thoroughly, and selecting some out of the hat to be in the sample. In particular, in a simple random sample, *every individual has an equal chance to be in the sample*, in fact, every subset of the population of a fixed size has an equal chance to be in the sample.

Other sampling methods include

convenience sampling using whatever individuals are easy to obtain

This is usually a terrible idea. If the convenient members of the population differ from the inconvenient members, then the sample will not be representative of the population.

volunteer sampling using people who volunteer to be in the sample

This is usually a terrible idea. Most likely the volunteers will differ in some ways from the non-volunteers, so again the sample will not be representative of the population.

systematic sampling sampling done in some systematic way (every tenth unit, for example).

This can sometimes be a reasonable approach.

stratified sampling sampling separately in distinct sub-populations (called *strata*)

This is more complicated (and sometimes necessary) but fine as long as the sampling methods in each stratum are good and the analysis takes the sampling method into account.

Example 1.15

sample(AllCountries, 5)

		Country	Code	LandArea	Population	Energ	/ Rura	al Milit	ary	Health	HIV	Inte	rnet De	evelop	ed
20	04	Uruguay	URU	175020	3.334	418	17.	.7	5.2	13.8	0.5	4	40.2		1
9	7	Jordan	JOR	88240	5.812	706	1 21	.6 1	8.1	16.3	NA		27.4		1
14	43	Niger	NIG	1266700	14.704	N	A 83.	.5	NA	14.8	0.8		0.5		NA
12	21	Mali	MLI	1220190	12.706	N	A 67	.8 1	4.7	11.1	1.0		1.6		NA
22	2	Bermuda	BER	50	0.064	N	A 0.	. 0	NA	NA	NA	-	79.4		NA
		BirthRa	te Elo	derlyPop	_ifeExpectar	ncy	C02	GDP	C	Cell Ele	ectri	icity	kwhPe	erCap	
20	04	14	. 6	13.7	76	6.0 2.4	19779	11995.8	132	2.19		2671	Under	2500	
9	7	25	.7	3.6	72	2.7 3.0	69488	4559.9	109	0.48		2112	Under	2500	
14	43	53	. 5	2.0	5	1.4 0.0)5887	357.7	24	.53		NA		<na></na>	
12	21	42	. 6	2.3	48	3.4 0.0	04108	601.9	47	7.66		NA		<na></na>	
22	2	12	. 5	NA	79	9.0 6.0)5455	NA	136	6.53		NA		<na></na>	
		orig.id	S												
20	04	204	4												
9	7	9	7												
14	43	143	3												
12	21	12	1												
2	2	2	2												

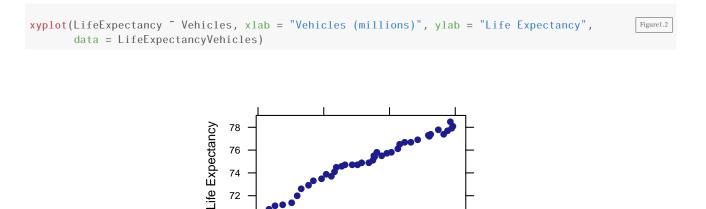
1.3 Experiments and Observational Studies

Confounding Variables

Table 1.2

he	<mark>ad</mark> (LifeExp	DectancyVehic	les, 10)				Table1.2
	Year Life	eExpectancy Ve	ehicles				
1	1970	70.8	108.4				
2	1971	71.1	113.0				
3	1972	71.2	118.8				
4	1973	71.4	125.7				
5	1974	72.0	129.9				
6	1975	72.6	132.9				
7	1976	72.9	138.5				
8	1977	73.3	142.1				
9	1978	73.5	148.4				
10	1979	73.9	151.9				
			V	V 0/0/ 4	0)		
		er(LifeExpecta	ancyvenicie	s, Year <mark>%%4</mark> ==	2)		
su	D						
	Year Life	eExpectancy Ve	ehicles				
1	1970	70.8	108.4				
2	1974	72.0	129.9				
3	1978	73.5	148.4				
4	1982	74.5	159.6				
5	1986	74.7	175.7				
6	1990	75.4	188.8				
7	1994	75.7	198.0				
8	1998	76.7	211.6				
9	2002	77.3	229.6				
10	2006	77.7	244.2				

Figure 1.2



200

250

Observational Studies vs Experiments

74 72

Statisticians use the word experiment to mean something very specific. In an experiment, the researcher determines the values of one or more (explanatory) variables, typically by random assignment. If there is no such assignment by the researcher, the study is an **observational study**.

Vehicles (millions)

150

Data2.1

Data2.1b

proportion

Describing Data

In this chapter we discuss graphical and numerical summaries of data.

2.1 Categorical Variables

Let us investigate categorical variables in R by taking a look at the data set for the One True Love survey. Notice that the data set is not readily available in our textbook's package. However, the authors do provide us with the necessary information to create our own data spreadsheet (in either Excel or Google) and import it into R. (See Chapter 0 for instructions.)

OneTrueLove <- read.file("OneTrueLove.csv")</pre>

Alternatively, we can read from a URL like this

OneTrueLove2 <- read.file("https://raw.githubusercontent.com/rpruim/Lock5withR/master/Book/OneTrueLove.csv")</pre>

One Categorical Variable

From the dataset we named as OneTrueLove, we can use the prop() function to quickly find proportions.

```
prop(~Response, data = OneTrueLove)
```

Agree 0.28

Table 2.1

We can also tabulate the categorical variable to display the *frequency* by using the tally() function. The default in tallying is to not include the row totals, or column totals when there are two variables. These are

called marginal totals and if you want them, you can change the default.

tally(~Respo	onse, margin =	TRUE, dat	a = OneTrueLo	ove)	Table2.1
Agree 735	Disagree Don' 1812	t know 78	Total 2625		

Example 2.3

To find the proportion of responders who *disagree* or *don't know*, we can use the **level**= argument in the function to find proportions.

```
Example2.3
prop(~Response, level = "Disagree", data = OneTrueLove)
Disagree
    0.6903
prop(~Response, level = "Don't know", data = OneTrueLove)
Don't know
    0.02971
```

Further, we can also display the *relative frequencies*, or **proportions** in a table.

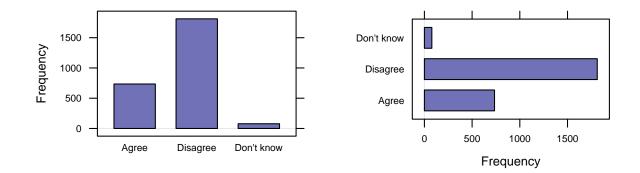
```
tally("Response, format = "proportion", margin = TRUE, data = OneTrueLove)
Agree Disagree Don't know Total
0.28000 0.69029 0.02971 1.00000
```

Figure 2.1

R provides many different chart and plot functions, including *bar charts* and *pie charts*, to visualize counts or proportions. Bar charts, also known as bar graphs, are a way of displaying the distribution of a categorical variable.

```
bargraph(~Response, data = OneTrueLove)
bargraph(~Response, data = OneTrueLove, horizontal = TRUE)
```

Figure2.1



Two Categorical Variables: Two-Way Tables

Often, it is useful to compute cross tables for two (or more) variables. We can again use tally() for several ways to investigate a two-way table.

Table 2.3

```
tally("Response + Gender, data = OneTrueLove)

Gender

Response Female Male

Agree 363 372

Disagree 1005 807

Don't know 44 34
```

Table 2.4

tally(~Respo	nse + Ge	ender,	, margi	ns = TRUE, data = OneTrueLove)	Table2.4
	Gender				
Response	Female	Male	Total		
Agree	363	372	735		
Disagree	1005	807	1812		
Don't know	44	34	78		
Total	1412	1213	2625		

Example 2.5

Similar to one categorical variable, we can use the prop() function to find the proportion of two variables. The first line results in the proportion of females who agree and the proportion of males who agree. The second line shows the proportion who agree that are female and the proportion who disagree that are female. The third results in the proportion of all the survey responders that are female.

Example2.5

Example2.5b

```
prop(Response ~ Gender, data = OneTrueLove)
Agree.Female Agree.Male
    0.2571    0.3067
prop(Gender ~ Response, data = OneTrueLove)
    Female.Agree Female.Disagree Female.Don't know
        0.4939     0.5546     0.5641
prop(~Gender, data = OneTrueLove)
Female
    0.5379
```

See though that because we have multiple levels of each variable, this process can become quite tedious if we want to find the proportions for all of the levels. Using the tally function a little differently will result in these proportions.

tally(Response ~ Gender, data = OneTrueLove) Gender Female Male Response 0.25708 0.30668 Agree Disagree 0.71176 0.66529 Don't know 0.03116 0.02803 tally(~Response | Gender, data = OneTrueLove) Gender Response Female Male Agree 0.25708 0.30668 Disagree 0.71176 0.66529 Don't know 0.03116 0.02803 tally(Gender ~ Response, data = OneTrueLove) Response Agree Disagree Don't know Gender Female 0.4939 0.5546 0.5641 Male 0.5061 0.4454 0.4359 tally(~Gender | Response, data = OneTrueLove) Response Gender Agree Disagree Don't know Female 0.4939 0.5546 0.5641 Male 0.5061 0.4454 0.4359

Notice that (by default) some of these use counts and some use proportions. Again, we can change the format.

```
tally(~Gender, format = "percent", data = OneTrueLove)
```

Female Male 53.79 46.21

Example 2.6

tally(~Gender + Award, margin = TRUE, data = StudentSurvey)
Award
Gender Academy Nobel Olympic Total
F 20 76 73 169
M 11 73 109 193

362

Also, we can arrange the table differently by converting it to a data frame.

		лсаценну	20
2	М	Academy	11
3	F	Nobel	76
4	М	Nobel	73
5	F	01ympic	73
6	М	01vmpic	109

Total 31 149 182

```
prop(~Award, level = "Olympic", data = StudentSurvey)
```

01ympic 0.5028

Example 2.7

To calculate the difference of certain statistics, we can use the diff() function. Here we use it to find the difference in proportions, but it can be used for means, medians, and etc.

diff(prop(Award ~ Gender, level = "Olympic", data = StudentSurvey))

Example2.7

Example2.5c

Example2.6

Example2.6b

Example2.6c

Olympic.M 0.1328

We will continue more with proportions in Chapter 3.

Figure 2.2

A way to look at multiple groups simultaneously is by using *comparative plots* such as a *segmented bar chart* or *side-by-side bar chart*. We use the groups argument for this. What groups does depends a bit on the type of graph. Using groups with histogram() doesn't work so well because it is difficult to overlay histograms.¹ Density plots work better for this.

Notice the addition of groups= (to group), stack= (to segment the graph), and auto.key=TRUE (to build a simple legend so we can tell which groups are which).

¹The mosaic function histogram() does do something meaningful with groups in some situations.

2.2 One Quantitative Variable: Shape and Center

The distribution of a variable answers two questions:

- What values can the variable have?
- With what frequency does each value occur?

Again, the frequency may be described in terms of counts, proportions (often called relative frequency), or densities (more on densities later).

A distribution may be described using a table (listing values and frequencies) or a graph (e.g., a histogram) or with words that describe general features of the distribution (e.g., symmetric, skewed).

The Shape of a Distribution

Table 2.14

MammalLongevity

	Animal	Gestation	Longevity
1	baboon	187	20
2	bear,black	219	18
3	bear,grizzly	225	25
4	bear,polar	240	20
5	beaver	122	5
6	buffalo	278	15
7	camel	406	12
8	cat	63	12
9	chimpanzee	231	20
10	chipmunk	31	6
11	COW	284	15
12	deer	201	8
13	dog	61	12
14	donkey	365	12
15	elephant	645	40
16	elk	250	15
17	fox	52	7
18	giraffe	425	10
19	goat	151	8
20	gorilla	257	20
21	guinea pig	68	4
22	hippopotamus	238	25
23	horse	330	20
24	kangaroo	42	7
25	leopard	98	12
26	lion	100	15
27	monkey	164	15
28	moose	240	12
29	mouse	21	3
30	opposum	15	1
31	pig	112	10
32	puma	90	12

43

33	rabbit	31	5
34	rhinoceros	450	15
35	sea lion	350	12
36	sheep	154	12
37	squirrel	44	10
38	tiger	105	16
39	wolf	63	5
40	zebra	365	15

Statisticians have devised a number of graphs to help us see distributions visually. The general syntax for making a graph of one variable in a data frame is

plotname(~variable, data = dataName)

In other words, there are three pieces of information we must provide to R in order to get the plot we want:

- The kind of plot (histogram(), bargraph(), densityplot(), bwplot(), etc.)
- The name of the variable
- The name of the data frame this variable is a part of.

This should look familiar from the previous section.

Figure 2.6

Let's make a *dot plot* of the variable Longevity in the MammalLongevity data set for a quick and simple look at the distribution. We use the syntax provided above with two additional arguments to make the figure look the way we want it to. The next few sections will explain a few of the different arguments available for plots in R.

dotPlot(~Longevity, width = 1, cex = 0.35, data = MammalLongevity)

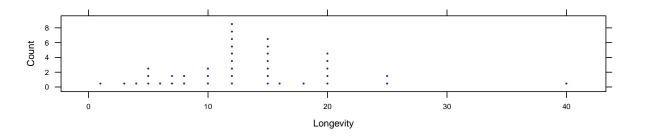


Table 2.15

Although tally() works with quantitative variables as well as categorical variables, this is only useful when there are not too many different values for the variable.

tally(~Longevity, margin = TRUE, data = MammalLongevity)

Table2.15

Figure2.6

1	3	4	5	6	7	8	10	12	15	16	18	20	25	40	
1	1	1	3	1	2	2	3	9	7	1	1	5	2	1	
Total															
40															

Sometimes, it is more convenient to group them into bins. We just have to tell R what the bins are. For example, suppose we wanted to group together by 5.

```
Table2.15b

binned.long <- cut(MammalLongevity$Longevity, breaks = c(0, 5, 10, 15, 20, 25, 30, 35, 40))

tally(~binned.long) # no data frame given because it is not in a data frame

(0,5] (5,10] (10,15] (15,20] (20,25] (25,30] (30,35] (35,40]

6 8 16 7 2 0 0 1
```

Suppose we wanted to group the 1s, 10s, 20s, etc. together. We want to make sure then that 10 is with the 10s, so we should add another argument.

```
Table2.15c

binned.long2 <- cut(MammalLongevity$Longevity, breaks = c(0, 10, 20, 30, 40, 50), right = FALSE)

tally(~binned.long2) # no data frame given because it is not in a data frame

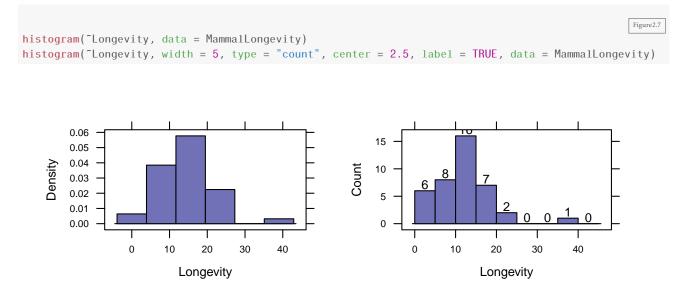
[0,10) [10,20) [20,30) [30,40) [40,50)

11 21 7 0 1
```

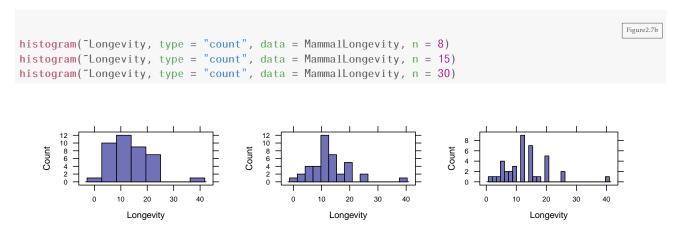
We won't use this very often however, since seeing this information in a histogram is typically more useful.

Figure 2.7

Histograms are a way of displaying the distribution of a quantitative variable.



We can control the (approximate) number of bins using the nint argument, which may be abbreviated as n. The number of bins (and to a lesser extent the positions of the bins) can make a histogram look quite different.



We can also describe the bins in terms of center and width instead of in terms of the number of bins. This is especially nice for count or other integer data.

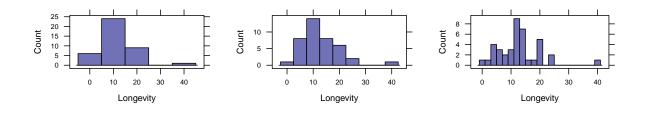
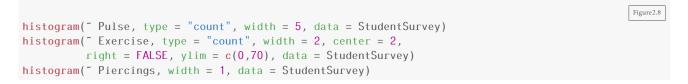
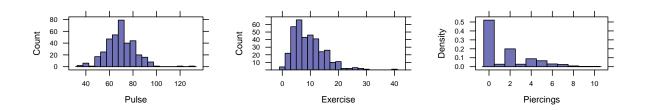


Figure 2.8

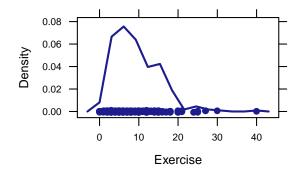
The various options available for the histogram() function enable us to replicate Figure 2.8, some including centering, adding counts, labels, and limit to the y-axis (similar for x-axis).



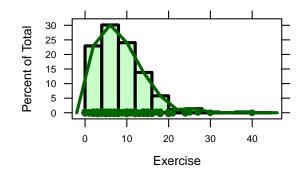


Sometimes a **frequency polygon** provides a more useful view. The only thing that changes is histogram() becomes freqpolygon().

```
freqpolygon(~Exercise, width = 5, data = StudentSurvey)
```



What is a frequency polygon? The picture below shows how it is related to a histogram. The frequency polygon is just a dot-to-dot drawing through the centers of the tops of the bars of the histogram.

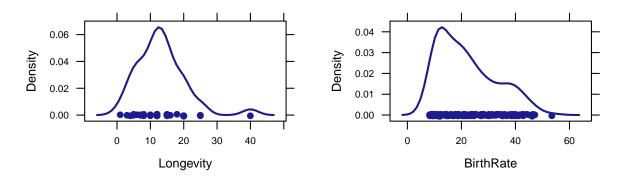


R also provides a "smooth" version called a density plot; just change the function name from histogram() to densityplot().

```
densityplot(~Longevity, data = MammalLongevity)
densityplot(~BirthRate, data = AllCountries)
```

freqpolygon

densityplot



If we make a histogram (or any of these other plots) of our data, we can describe the overall shape of the distribution. Keep in mind that the shape of a particular histogram may depend on the choice of bins. Choosing too many or too few bins can hide the true shape of the distribution. (When in doubt, make more than one histogram.)

Here are some words we use to describe shapes of distributions.

symmetric The left and right sides are mirror images of each other.

- **skewed** The distribution stretches out farther in one direction than in the other. (We say the distribution is skewed toward the long tail.)
- **uniform** The heights of all the bars are (roughly) the same. (So the data are equally likely to be anywhere within some range.)

unimodal There is one major "bump" where there is a lot of data.

bimodal There are two "bumps".

outlier An observation that does not fit the overall pattern of the rest of the data.

The Center of a Distribution

Recall that a statistic is a number computed from data. The **mean** and the **median** are key statistics which describe the center of a distribution. We can see through Example 2.11 that numerical summaries are computed using the same template as graphical summaries.

Note that the example asks about subsets of ICUAdmissions-specifically about 20-year-old and 55-year-old patients. In this case, we can manipulate the data (to name a new data set) with the subset command. Here are some examples.

1. Select only the males from the ICUAdmissions data set.

he	ad(ICU	Admi	ssid	ons,	2)												subset
	ID	Sta	tus	Age	Sex	Rac	e Sei	rvice	Cancer	Renal	Infec	tion	CPR	Syste	olic	HeartRate	Previou	S
1	8		0	27	1		1	0	0	0		1	0		142	88		0
2	12		0	59	0		1	0	0	0		0	0		112	80		1
	Тур	e F	ract	ure	P02	PH	PC02	Bicar	rbonate	Creati	inine	Conso	cious	sness	stat	us sex	race	
1		1		0	0	0	0		0		0			1	Liv	ed Female	White	
2		1		0	0	0	0		0		0			1	Liv	ed Male	White	
	ser	vic	e ca	ncer	rer	nal	infe	ction	cpr pre	evious		type	p021	low p()2 pH	llow pH pC	02hi pCO	2

```
1 Medical
             No
                   No
                             Yes No
                                          No Emergency
                                                            No Hi
                                                                      No Hi
2 Medical
                                                            No Hi
             No
                    No
                             No No
                                          Yes Emergency
                                                                      No Hi
 bicarbonateLow bicarbonate creatinineHi creatinine consciousness
1
             No
                          Hi
                                       No
                                                Low
                                                         Conscious
2
                          Hi
              No
                                       No
                                                 Low
                                                         Conscious
tally(~sex, data = ICUAdmissions)
Female
         Male
   76
          124
ICUMales <- subset(ICUAdmissions, sex == "Male") # notice the double =</pre>
tally(~sex, data = ICUMales)
Female
        Male
0
       124
```

2. Select only the subjects over 50:

```
ICUOld <- subset(ICUAdmissions, Age > 50)
```

The subset() function can use any condition that evaluates to TRUE or FALSE for each row (case) in the data set.

Example 2.11

```
ICU20 <- subset(ICUAdmissions, Age == "20")
mean("HeartRate, data = ICU20)
[1] 82.2
median("HeartRate, data = ICU20)
[1] 80
ICU55 = subset(ICUAdmissions, Age == "55")
mean("HeartRate, data = ICU55)
[1] 108.5
median("HeartRate, data = ICU55)
[1] 106</pre>
```

subset2

No Low

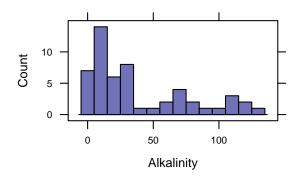
No Low

Resistance

Figure 2.10

hea	<mark>ad</mark> (F	loridaLakes)							Figure2.
	ID	Lake	Alkalinity	pН	Calcium	Chlorophyll	AvgMercury	NumSamples	MinMercury	
1	1	Alligator	5.9	6.1	3.0	0.7	1.23	5	0.85	
2	2	Annie	3.5	5.1	1.9	3.2	1.33	7	0.92	
3	3	Apopka	116.0	9.1	44.1	128.3	0.04	6	0.04	
4	4 B	lue Cypress	39.4	6.9	16.4	3.5	0.44	12	0.13	
5	5	Brick	2.5	4.6	2.9	1.8	1.20	12	0.69	
6	6	Bryant	19.6	7.3	4.5	44.1	0.27	14	0.04	
I	MaxM	ercury Three	eYrStdMercur	y Ag	geData					
1		1.43	1.5	53	1					
2		1.90	1.3	33	0					
3		0.06	0.0)4	0					
4		0.84	0.4	4	0					
5		1.50	1.3	33	1					
6		0.48	0.2	25	1					

histogram(~Alkalinity, width = 10, type = "count", data = FloridaLakes)



Example 2.14

mean(~Alkalinity, data = FloridaLakes)

[1] 37.53

median(~Alkalinity, data = FloridaLakes)

[1] 19.6

2.10

2.3 One Quantitative Variable: Measures of Spread

In the previous section, we investigated center summary statistics. In this section, we will cover some other important statistics.

Example 2.15

```
Example2.15
summary(April14Temps)
     Year
                DesMoines
                            SanFrancisco
Min. :1995
             Min. :37.2
                           Min. :48.7
1st Qu.:1999 1st Qu.:44.4
                           1st Qu.:51.3
Median :2002 Median :54.5
                           Median :54.0
Mean :2002 Mean :54.5
                           Mean :54.0
3rd Qu.:2006 3rd Qu.:61.3
                           3rd Qu.:55.9
Max. :2010 Max. :74.9 Max. :61.0
favstats(~DesMoines, data = April14Temps) # some favorite statistics
 min Q1 median
                  Q3 max mean
                                  sd n missing
37.2 44.4 54.5 61.28 74.9 54.49 11.73 16
                                             0
favstats(~SanFrancisco, data = April14Temps)
                                sd n missing
 min Q1 median Q3 max mean
48.7 51.3 54 55.9 61 54.01 3.377 16
                                           0
```

Standard Deviation

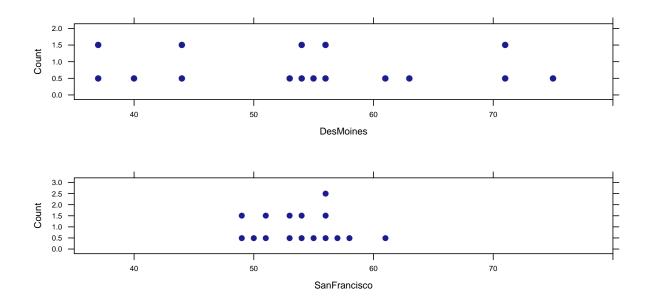
The density plots of the temperatures of Des Moines and San Francisco reveal that Des Moines has a greater *variability* or *spread*.

Figure 2.18

The cex argument controls "character expansion" and can be used to make the plotting "characters" larger or smaller by specifying the scaling ratio. xlim sets the limits for the x-axis.

dotPlot(~DesMoines, width = 1, cex = 0.25, xlim = c(35, 80), data = April14Temps)
dotPlot(~SanFrancisco, width = 1, cex = 0.35, xlim = c(35, 80), data = April14Temps)

Figure2.18



Example 2.16

Although both summary() and favstats() calculate the standard deviation of a variable, we can also use sd() to find just the standard deviation.

sd(~DesMoines, data = April14Temps)

[1] 11.73

```
sd(~SanFrancisco, data = April14Temps)
```

[1] 3.377

```
var(~DesMoines, data = April14Temps) # variance = sd^2
```

[1] 137.6

Example 2.17

To see that the distribution is indeed symmetric and approximately bell-shaped, you can use the argument fit to overlay a "normal" curve.

```
histogram(~Pulse, fit = "normal", data = StudentSurvey)
mean <- mean(~Pulse, data = StudentSurvey)
mean</pre>
```

[1] 69.57

standard-deviation

```
sd <- sd(~Pulse, data = StudentSurvey)
sd
[1] 12.21
mean - 2 * sd
[1] 45.16
mean + 2 * sd
[1] 93.98</pre>
```

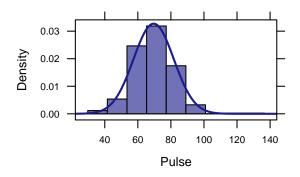
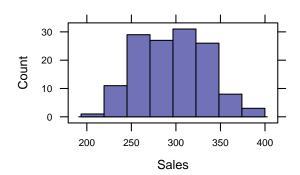


Figure 2.20

histogram(~Sales, type = "count", data = RetailSales)



Example 2.18

Figure2.20

©2014

Example2.18

```
mean <- mean(~Sales, data = RetailSales)
mean
[1] 296.4
sd <- sd(~Sales, data = RetailSales)
sd
[1] 37.97
mean - 2 * sd
[1] 220.5
mean + 2 * sd
[1] 372.4</pre>
```

Example 2.19

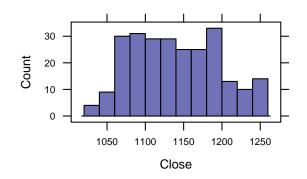
Z-scores can be computed as follows:

```
[204 - mean(~Systolic, data = ICUAdmissions))/sd(~Systolic, data = ICUAdmissions)
[1] 2.176
(52 - mean(~HeartRate, data = ICUAdmissions))/sd(~HeartRate, data = ICUAdmissions)
[1] -1.749
```

Percentiles

Figure 2.21

histogram(~Close, type = "count", width = 20, center = 10, data = SandP500)



Example 2.20

The text uses a histogram to estimate the **percentile** of the daily closing price for the S&P 500 but we can also find the exact percentiles using the quantile() function.

Five Number Summary

We have already covered many different functions which results in the **five number summary** but fivenum() is most direct way to obtain in the five number summary.

Example 2.21

fivenum(~Exercise, data = StudentSurvey)

Example 2.22

fivenum(~Longevity, data = MammalLongevity)

[1] 1.0 8.0 12.0 15.5 40.0

Example2.20

Last Modified: September 4, 2014

Example2.21

```
min(~Longevity, data = MammalLongevity)
[1] 1
max(~Longevity, data = MammalLongevity)
[1] 40
range(~Longevity, data = MammalLongevity) # subtract to get the numerical range value
[1] 1 40
iqr(~Longevity, data = MammalLongevity) # interquartile range
[1] 7.25
```

Note the difference in the quartile and IQR from the textbook. This results because there are several different methods to determine the quartile.

Example 2.23

fivenum("DesMoines, data = April14Temps)
[1] 37.20 44.40 54.50 61.95 74.90
fivenum("SanFrancisco, data = April14Temps)
[1] 48.7 51.2 54.0 56.0 61.0
range("DesMoines, data = April14Temps)
[1] 37.2 74.9
diff(range("DesMoines, data = April14Temps))
[1] 37.7
range("SanFrancisco, data = April14Temps)
[1] 48.7 61.0
diff(range("SanFrancisco, data = April14Temps))
[1] 12.3

56

```
iqr(~DesMoines, data = April14Temps)
[1] 16.88
iqr(~SanFrancisco, data = April14Temps)
[1] 4.6
```

2.4 Outliers, Boxplots, and Quantitative/Categorical Relationships

Detection of Outliers

Generally, outliers are considered to be values

- less than $Q_1 1.5 \cdot (IQR)$, and
- greater than $Q_3 + 1.5 \cdot (IQR)$.

Example 2.25

There is no function in R that directly results in outliers because practically, there is no one specific formula for such a determination. However, a boxplot will indirectly reveal outliers.

57

Boxplots

A way to visualize the five number summary and outliers for a variable is to create a boxplot.

Example 2.26

```
favstats(~Longevity, data = MammalLongevity)
min Q1 median Q3 max mean sd n missing
1 8 12 15.25 40 13.15 7.245 40 0
bwplot(~Longevity, data = MammalLongevity)
```

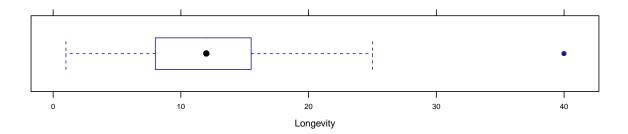


Figure 2.32

```
bwplot(~Smokers, data = USStates)
```

Example 2.27

We can similarity investigate the *Smokers* variable in USStates.

fivenum(~Smokers, data = USStates)

[1] 11.5 19.3 20.6 22.6 28.7

Example2.27

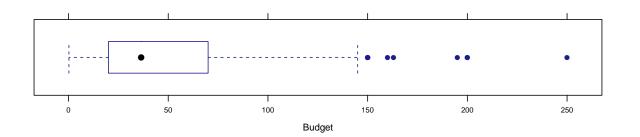
Figure2.32

The boxplot reveals two outliers. To identify them, we can again use subset() for smokers greater or less than the *whiskers* of the boxplot.

```
Example2.27b
subset(USStates, Smokers < 15)</pre>
                         IQ McCainVote Region ObamaMcCain Population EighthGradeMath
  State HouseholdIncome
                                                    M 2.421
44 Utah
                 55619 101.1
                                0.629
                                       W
                                                                           279.2
  HighSchool GSP FiveVegetables Smokers PhysicalActivity Obese College NonWhite
44
          91 36758
                           22.1 11.5
                                                 83.1 21.2 31 12.1
  HeavyDrinkers Pres2008
44
          2.9 McCain
subset(USStates, Smokers > 28)
     State HouseholdIncome IQ McCainVote Region ObamaMcCain Population EighthGradeMath
                                                                               274
17 Kentucky
                   38694 99.4
                                  0.575
                                          MW
                                                       М
                                                              4.142
  HighSchool GSP FiveVegetables Smokers PhysicalActivity Obese College NonWhite
17
       81.8 33666
                           16.8
                                   28.7
                                                  70.1 28.6
                                                               22.6
                                                                         9.4
  HeavyDrinkers Pres2008
     2.7 McCain
17
```

Figure 2.33

bwplot(~Budget, data = HollywoodMovies2011)



Example 2.28

<pre>subset(Holly</pre>	woodMovies2011, B	udget > 225)						Example2.28
			Movie Lea	adStudio R	ottenToma	toes Audien	iceScore	
30 Pirates o	of the Caribbean:\	nOn Stranger	Tides	Disney		34	61	
Story Ge	nre TheatersOpenW	eek BOAverage	eOpenWeek	DomesticG	ross Fore	ignGross Wo	rldGross	
30 Quest Act	ion 4	155	21697	24	41.1	802.8	1044	
Budget Pr	ofitability Openi	ngWeekend						
30 250	4.175	90.15						
head(Hollywo	odMovies2011)							

Figure2.33

		Movie	LeadStudio	RottenToma	atoes	
1		Insidious	Sony		67	
2	Paranor	mal Activity 3	Independent		68	
3		Bad Teacher	Independent		44	
4 Harry Potter a	and the Deathly H	Hallows Part 2	Warner Bros		96	
5		Bridesmaids	Relativity Media		90	
6	Mid	night in Paris	Sony		93	
AudienceScore	Story	Genre Theaters	OpenWeek BOAvera	geOpenWeek	DomesticGross	
1 65	Monster Force	Horror	2408	5511	54.01	
2 58	Monster Force	Horror	3321	15829	103.66	
3 38	Comedy (Comedy	3049	10365	100.29	
4 92	Rivalry Fa	antasy	4375	38672	381.01	
5 77	Rivalry (Comedy	2918	8995	169.11	
6 84	Love Ro	omance	944	6177	56.18	
ForeignGross N	WorldGross Budge	t Profitability	/ OpeningWeekend			
1 43.00	97.01 1.5	5 64.673	3 13.27			
2 98.24	201.90 5.0	40.379	52.57			
3 115.90	216.20 20.0	0 10.810	31.60			
4 947.10	1328.11 125.0	0 10.625	5 169.19			
5 119.28	288.38 32.5	5 8.873	26.25			
6 83.00	139.18 17.0	0 8.187	5.83			

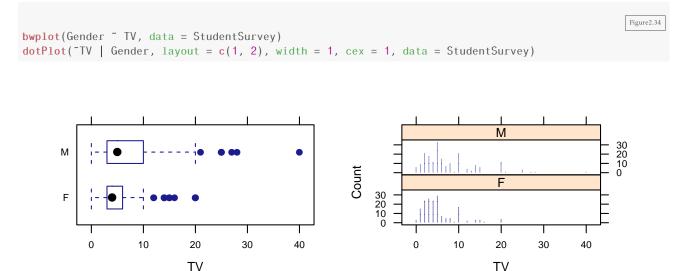
One Quantitative and One Categorical Variable

The formula for a lattice plot can be extended to create multiple panels (sometimes called **facets**) based on a "condition", often given by another variable. This is another way to look at multiple groups simultaneously. The general syntax for this becomes

```
plotname(~variable | condition, data = dataName)
```

Figure 2.34

Depending on the type of plot, you will want to use conditioning.

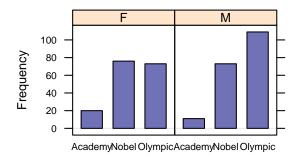


We can do the same thing for bar graphs.

61

Figure2.34b

bargraph(~Award | Gender, data = StudentSurvey)



This graph should be familiar as we have plotted these variables together previously. Here we used different panels, but before, in 2.1, we had used grouping. Note that we can combine grouping and conditioning in the same plot.

Example 2.31

```
favstats(~TV | Gender, data = StudentSurvey)
diff(mean(~TV | Gender, data = StudentSurvey))
```

2.5 Two Quantitative Variables: Scatterplot and Correlation

Example 2.32

ElectionMargin

		-			
	Year	Candidate	Approval	Margin	Result
1	1940	Roosevelt	62	10.0	Won
2	1948	Truman	50	4.5	Won
3	1956	Eisenhower	70	15.4	Won
4	1964	Johnson	67	22.6	Won
5	1972	Nixon	57	23.2	Won
6	1976	Ford	48	-2.1	Lost
7	1980	Carter	31	-9.7	Lost
8	1984	Reagan	57	18.2	Won
9	1992	G.H.W.Bush	39	-5.5	Lost
10	1996	Clinton	55	8.5	Won
11	2004	G.W.Bush	49	2.4	Won

Example2.32

Visualizing a Relationship between Two Quantitative Variables: Scatterplots

The most common way to look at two quantitative variables is with a scatterplot. The lattice function for this is xyplot(), and the basic syntax is

xyplot(yvar ~ xvar, data = dataName)

Notice that now we have something on both sides of the ~ since we need to tell R about two variables.

Example 2.33

xyplot(Margin ~ Approval, data = ElectionMargin)

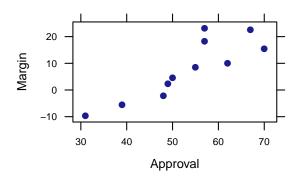
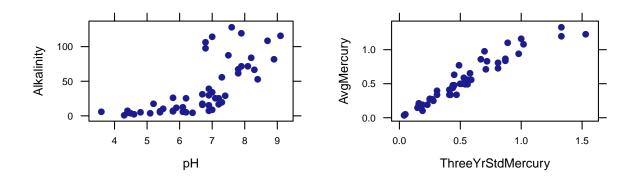


Figure 2.49

```
xyplot(AvgMercury ~ pH, data = FloridaLakes)
                                                                                                                                                                                                                   Figure2.49
xyplot(AvgMercury ~ Alkalinity, data = FloridaLakes)
xyplot(Alkalinity ~ pH, data = FloridaLakes)
xyplot(Alkalinity ~ pH, data = FloridaLakes)
xyplot(AvgMercury ~ ThreeYrStdMercury, data = FloridaLakes)
                                                                                                                   AvgMercury
        AvgMercury
                                                                                                                           1.0
                1.0
                0.5
                                                                                                                           0.5
                0.0
                                                                                                                           0.0
                                   4
                                              5
                                                          6
                                                                                 8
                                                                                             9
                                                                                                                                        0
                                                                                                                                                                 50
                                                                                                                                                                                         100
                                                                      7
```

pН

Alkalinity



Summarizing a Relationship between Two Quantitative Variables: Correlation

Another key numerical statistic is the **correlation**–the correlation is a measure of the strength and direction of the relationship between two quantitative variables.

```
Table 2.31
Table
```

CricketChirps

```
Temperature Chirps 1 54.5 81
```

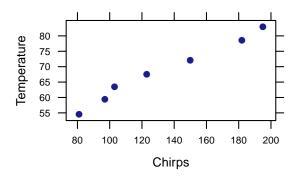
63

Table2.31

2	59.5	97
3	63.5	103
4	67.5	123
5	72.0	150
6	78.5	182
7	83.0	195

Figure 2.50

xyplot(Temperature ~ Chirps, data = CricketChirps)



Example 2.35

cor(Temperature ~ Chirps, data = CricketChirps)

[1] 0.9906

Example 2.38

Further, using the subset() function again, we can investigate the correlation between variables with some restrictions.

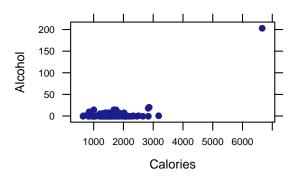
```
xyplot(Alcohol ~ Calories, data = subset(NutritionStudy, Age > 59))
cor(Alcohol ~ Calories, data = subset(NutritionStudy, Age > 59))
```

[1] 0.72

Example2.38

Example2.35

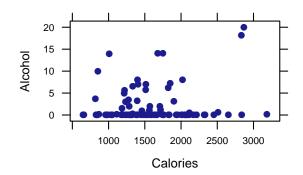
Figure2.50



And now we omit the outlier

```
NutritionStudy60 = subset(NutritionStudy, Age > 59)
xyplot(Alcohol ~ Calories, data = subset(NutritionStudy60, Alcohol < 25))
cor(Alcohol ~ Calories, data = subset(NutritionStudy60, Alcohol < 25))</pre>
```

[1] 0.145



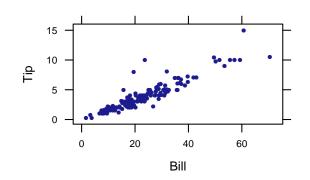
2.6 Two Quantitative Variables: Linear Regression

Figure 2.63

xyplot(Tip ~ Bill, cex = 0.5, data = RestaurantTips)

Figure2.63

Example2.38b

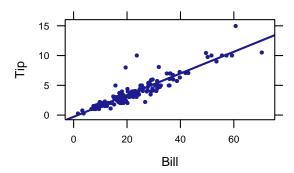


Example 2.39

When the relationship between variables is sufficiently *linear*, you may be able to predict the value of a variable using the other variable. This is possible by fitting a *regression line*. To plot this in R, all we need to do is add an additional argument, type=c("p", "r"), to the xyplot.

xyplot(Tip ~ Bill, cex = 0.5, type = c("p", "r"), data = RestaurantTips)
cor(Tip ~ Bill, data = RestaurantTips)

[1] 0.9151



The equation for the regression line, or the *prediction equation* is

 $\widehat{\text{Response}} = a + b \cdot \text{Explanatory}$

So now, we need to find the values for a, the intercept, and b, the slope using the function to fit linear models.

Example 2.41

lm(Tip ~ Bill, data = RestaurantTips)

```
Call:

lm(formula = Tip ~ Bill, data = RestaurantTips)

Coefficients:

(Intercept) Bill

-0.292 0.182

coef(lm(Tip ~ Bill, data = RestaurantTips)) # just show me the coefficients

(Intercept) Bill

-0.2923 0.1822
```

This results in the equation

 $\widehat{\text{Tip}} = -0.2923 + 0.1822 \cdot \text{Bill}$

With this equation, one can predict the tip for different bill amounts.

```
Tip.Fun <- makeFun(1m(Tip ~ Bill, data = RestaurantTips)) # make a function of the linear model
Tip.Fun(Bill = 59.33) # predicted tip when bill is $59.33
1
10.52
Tip.Fun(Bill = 9.52)
1
1.442
Tip.Fun(Bill = 23.7)
1
4.026</pre>
```

An important aspect of the linear regression is the difference between the prediction and actual observation. This is called the **residual**, defined

residual = observed response - predicted response

```
Example 2.42
```

```
Resid.a <- 10 - 10.51 # predicted tip from Example 2.41
Resid.a
```

Example2.42

[1] -0.51

Resid.b <- 1 - 1.44 Resid.b Example2.41b

[1] -0.44

Resid.c <- 10 - 4.02 Resid.c

[1] 5.98

Example 2.43

```
Elect.mod <- lm(Margin ~ Approval, data = ElectionMargin)

resid(lm(Margin ~ Approval, data = ElectionMargin))

1 2 3 4 5 6 7 8 9 10 11

-5.3229 -0.7959 -6.6075 3.0992 12.0551 -5.7247 0.8802 7.0551 -1.6045 -0.9738 -2.0603
```

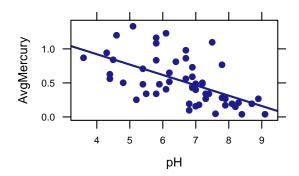
Example 2.45

```
lm(AvgMercury ~ pH, data = FloridaLakes)
```

Call: lm(formula = AvgMercury ~ pH, data = FloridaLakes)

Coefficients: (Intercept) pH 1.531 -0.152

xyplot(AvgMercury ~ pH, type = c("p", "r"), data = FloridaLakes)



Mer.Fun <- makeFun(lm(AvgMercury ~ pH, data = FloridaLakes))
Mer.Fun(pH = 7.5) # predicted mercury level at 7.5 pH</pre>

69

1 0.3887

```
Resid <- 1.1 - 0.388 # residual at 7.5 pH
Resid
```

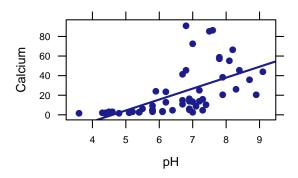
[1] 0.712

Example 2.46

Figure 2.68

xyplot(Calcium ~ pH, type = c("p", "r"), data = FloridaLakes)

Figure2.68



Ċ

Example3.4

Confidence Intervals

3.1 Sampling Distributions

The key idea in this chapter is the notion of a sampling distribution. Do not confuse it with the population (what we would like to know about) or the sample (what we actually have data about). If we could repeatedly sample from a population, and if we computed a statistic from each sample, the distribution of those statistics would be the sampling distribution. Sampling distributions tell us how things vary from sample to sample and are the key to interpreting data.

Variability of Sample Statistics

Example 3.4

head(StatisticsPhD)

	University	Department	FTGradEnrollment			
1 Baylor	University	Statistics	26			
2 Boston	University	Biostatistics	39			
3 Brown	University	Biostatistics	21			
4 Carnegie Mellon	University	Statistics	39			
5 Case Western Reserve	University	Statistics	11			
6 Colorado State	University	Statistics	14			
<pre>mean(~FTGradEnrollment, data = StatisticsPhD) # mean enrollment in original population</pre>						
[1] 53.54						

Example 3.5

To select a random sample of a certain size in R, we can use the sample() function.

<pre>sample10 <- sample(StatisticsPhD, 10) sample10</pre>						
University Department FTGradEnrollm	ment orig.ids					
23 Michigan State University Statistics	81 23					
28 Ohio State University Statistics	101 28					
11 Emory University Biostatistics	58 11					
21 Medical College of Wisconsin Biostatistics	7 21					
15 Harvard University Biostatistics	70 15					
29 Oklahoma State University Statistics	22 29					
13 George Mason University Statistics	10 13					
5 Case Western Reserve University Statistics	11 5					
9 Cornell University Statistics	78 9					
81 Western Michigan Statistics Statistics	31 81					
<pre>x.bar <- mean(~FTGradEnrollment, data = sample10) x.bar # mean enrollment in sample10</pre>						
[1] 46.9						

Note that this sample has been assigned a name to which we can refer back to find the mean of that particular sample.

```
Example3.5b
mean(~FTGradEnrollment, data = sample(StatisticsPhD, 10)) # mean enrollment in another sample
```

[1] 65.3

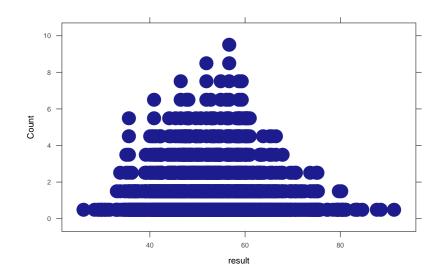
Figure 3.1

We should check that that our sample distribution has an appropriate shape:

```
Figure3.1
# Now we'll do it 1000 times
sampledist <- do(1000) * mean(~FTGradEnrollment, data = sample(StatisticsPhD, 10))
head(sampledist, 3)

result
1 44.6
2 58.3
3 61.0

dotPlot(~result, width = 0.005, data = sampledist)</pre>
```



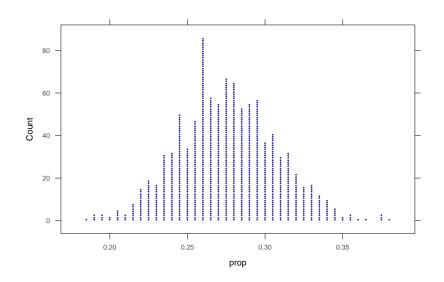
In many (but not all) situations, the sampling distribution is

- unimodal,
- symmetric, and
- bell-shaped (The technical phrase is "approximately normal".)

Example 3.6

This time we don't have data, but instead we have a summary of the data. We can however, still simulate the sample distribution by using the rflip() function.

```
Example3.6
sampledist.deg <- do(1000) * rflip(200, 0.275) # 1000 samples, each of size 200 and proportion 0.275
head(sampledist.deg, 3)
n heads tails prop
1 200 63 137 0.315
2 200 58 142 0.290
3 200 60 140 0.300
dotPlot(~prop, width = 0.005, data = sampledist.deg)
```



Measuring Sampling Variability: The Standard Error

The standard deviation of a sampling distribution is called the **standard error**, denoted SE.

The standard error is our primary way of measuring how much variability there is from sample statistic to sample statistic, and therefore how precise our estimates are.

Example 3.7

Calculating the SE is the same as calculating the standard deviation of a sampling distribution, so we use sd().

```
SE <- sd(~result, data = sampledist)
SE # sample from Example 3.5
[1] 10.86
SE2 <- sd(~prop, data = sampledist.deg)
SE2 # sample from Example 3.6
[1] 0.03147</pre>
```

The Importance of Sample Size

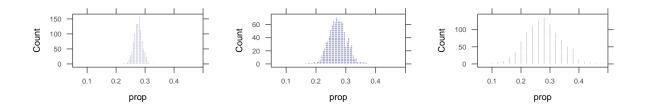
Example 3.9

Example3.7

sampledist.1000 <- do(1000) * rflip(1000, 0.275) # 1000 samples, each of size 1000 and propor 1000 275
sampledist.200 <- do(1000) * rflip(200, 0.275) # 1000 samples, each of size 200 and proportion 0.275
sampledist.50 <- do(1000) * rflip(50, 0.275) # 1000 samples, each of size 50 and proportion 0.275</pre>

Figure 3.3

```
 \frac{dotPlot(~prop, width = 0.005, xlim = c(0.05, 0.5), data = sampledist.1000)}{dotPlot(~prop, width = 0.005, xlim = c(0.05, 0.5), data = sampledist.200)} 
 \frac{dotPlot(~prop, width = 0.005, xlim = c(0.05, 0.5), data = sampledist.50)}{dotPlot(~prop, width = 0.005, xlim = c(0.05, 0.5), data = sampledist.50)}
```



3.2 Understanding and Interpreting Confidence Intervals

```
Interval Estimates and Margin of Error
```

```
An interval estimate gives a range of plausible values for a population parameter.
```

This is better than a single number (also called a point estimate) because it gives some indication of the precision of the estimate.

One way to express an interval estimate is with a point estimate and a margin of error.

We can convert margin of error into an interval by adding and subtracting the margin of error to/from the statistic.

Example 3.12

```
p.hat <- 0.42  # sample proportion
MoE <- 0.03  # margin of error
p.hat - MoE  # lower limit of interval estimate
[1] 0.39
p.hat + MoE  # upper limit of interval estimate
[1] 0.45</pre>
```

Example 3.13

p.hat <- 0.54 MoE <- 0.02 p.hat - MoE	<pre># sample proportion # margin of error # lower limit of interval estimate</pre>	Example3.13
[1] 0.52		
p.hat + MoE	<pre># upper limit of interval estimate</pre>	
[1] 0.56		
p.hat <- 0.54 MoE <- 0.1 p.hat - MoE		Example3.13b
[1] 0.44		
p.hat + MoE		
[1] 0.64		

Confidence Intervals

A confidence interval for a parameter is an interval computed from sample data by a method that will capture the parameter for a specified proportion of all samples

- 1. The probability of correctly containing the parameter is called the coverage rate or **confidence level**.
- 2. So 95% of 95% confidence intervals contain the parameter being estimated.
- 3. The margins of error in the tables above were designed to produce 95% confidence intervals.

Example 3.14

```
x.bar <- 61.5  # given sample mean
SE <- 11  # given estimated standard error
MoE <- 2 * SE; MoE  # margin of error for 95% CI
[1] 22
x.bar - MoE  # lower limit of 95% CI</pre>
```

[1] 39.5	
x.bar + MoE	# upper limit of 95% CI
[1] 83.5	

Understanding Confidence Intervals

Example 3.15

SE <- 0.03 p1 <- 0.26 p2 <- 0.32 p3 <- 0.2 MoE <- 2 * SE	Example3.15
	Example3.15b
p1 - MoE	Examples.150
[1] 0.2	
p1 + MoE	
[1] 0.32	
p2 - MoE	
[1] 0.26	
p2 + MoE	
[1] 0.38	
p3 - MoE	
[1] 0.14	
p3 + MoE	
[1] 0.26	

Figure 3.12

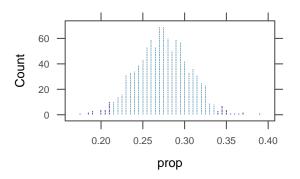
Figure3.12

p <- 0.275 SE <- 0.03 MoE <- 2 * SE p - MoE

p + MoE

[1] 0.335

dotPlot(~prop, width = 0.005, groups = (0.215 <= prop & prop <= 0.335), data = sampledist.deg)</pre>

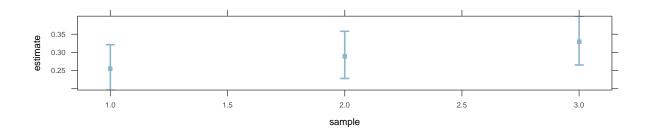


Notice how we defined groups in this dotplot. We are grouping proportions that less than 0.215 and more than 0.335.

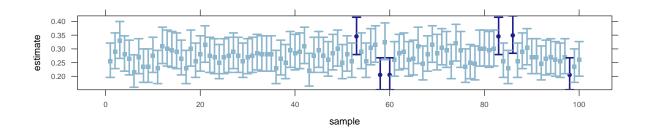
Figure 3.13

We can create the data needed for plots like Figure 3.13 using Clsim(). The plot itself uses xYplot() from the Hmisc package.

```
Figure3.13
Figure3.13
results <- CIsim(200, samples = 3, rdist = rbinom, args = list(size = 1, prob = 0.275), method = binom.test,
method.args = list(success = 1), verbose = FALSE, estimand = 0.275)
require(Hmisc)
xYplot(Cbind(estimate, lower, upper) ~ sample, data = results, par.settings = col.mosaic(),
groups = cover)</pre>
```



```
Figure3.13b
Figure3.13b
results <- CIsim(200, samples = 100, rdist = rbinom, args = list(size = 1, prob = 0.275), method = binom.test,
method.args = list(success = 1), verbose = FALSE, estimand = 0.275)
require(Hmisc)
xYplot(Cbind(estimate, lower, upper) ~ sample, data = results, par.settings = col.mosaic(),
groups = cover)</pre>
```



Interpreting Confidence Intervals

Example 3.16

x.bar <- 27.655 SE <- 0.009 MoE <- 2 * SE x.bar - MoE	Example3.16
[1] 27.64	
x.bar + MoE	
[1] 27.67	

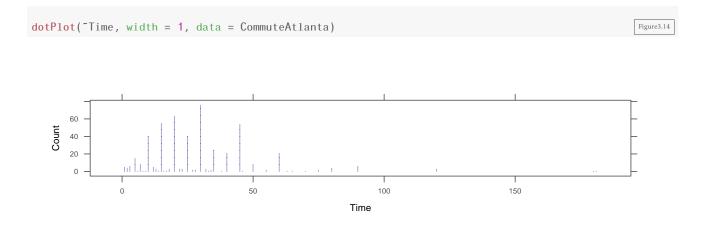
Example 3.17

diff.x <1.915 SE <- 0.016 MoE <- 2 * SE diff.x - MoE	Example3.17
[1] -1.947	
diff.x + MoE	
[1] -1.883	

3.3 Constructing Bootstrap Confidence Intervals

Here's the clever idea: We don't have the population, but we have a sample. Probably the sample it similar to the population in many ways. So let's sample from our sample. We'll call it **resampling** (also called **bootstrap-ping**). We want samples the same size as our original sample, so we will need to sample with replacement. This means that we may pick some members of the population more than once and others not at all. We'll do this many times, however, so each member of our sample will get its fair share. (Notice the similarity to and difference from sampling from populations in the previous sections.)

Figure 3.14



Bootstrap Samples

Table 3.7

The computer can easily do all of the resampling by using the resample().

```
Table3.7
Time, data = resample(CommuteAtlanta))  # mean commute time in one resample
[1] 30.08
[1] 30.85
mean(~Time, data = resample(CommuteAtlanta))
[1] 28.32
```

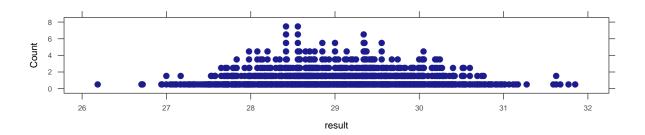
Bootstrap Distribution

Figure 3.16

The example below uses data from 500 Atlanta commuters.

```
# Now we'll do it 1000 times
Bootstrap <- do(1000) * mean(~Time, data = resample(CommuteAtlanta))
head(Bootstrap, 3)
result
1 30.84
2 30.76
3 28.64</pre>
```

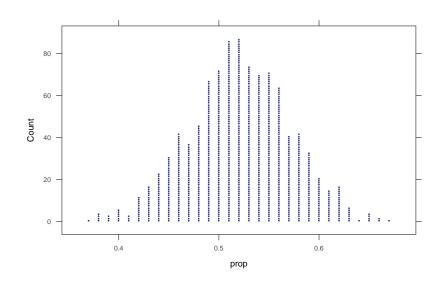
We should check that that our bootstrap distribution has an appropriate shape: dotPlot(~result, width = 0.005, data = Bootstrap)



Example 3.19

```
BootP <- do(1000) * rflip(100, 0.52)
head(BootP, 3)
n heads tails prop
1 100 51 49 0.51
2 100 48 52 0.48
3 100 52 48 0.52
dotPlot(~prop, width = 0.01, data = BootP)
```

Figure3.16



Example 3.20

Variables can be created in R using the c() function then collected into a data frame using the data.frame() function.

```
Laughter <- data.frame(NumLaughs = c(16, 22, 9, 31, 6, 42))
mean("NumLaughs, data = Laughter)
[1] 21
mean("NumLaughs, data = resample(Laughter))
[1] 30.83
mean("NumLaughs, data = resample(Laughter))
[1] 19.33
mean("NumLaughs, data = resample(Laughter))
[1] 22.33
```

Estimating Standard Error Based on a Bootstrap Distribution

Example 3.21

Since the shape of the bootstrap distribution from Example 3.19 looks good, we can estimate the standard error.

Last Modified: September 4, 2014

```
SE <- sd(~prop, data = BootP)
SE
[1] 0.04783</pre>
```

95 % Confidence Interval Based on a Bootstrap Standard Error

Example 3.22

We can again use the standard error to compute a 95% confidence interval.

```
x.bar <- mean("Time, data = CommuteAtlanta); x.bar
[1] 29.11
SE <- sd("result, data = Bootstrap ); SE  # standard error
[1] 0.917
MoE <- 2 * SE; MoE  # margin of error for 95% CI
[1] 1.834
x.bar - MoE  # lower limit of 95% CI
[1] 27.28
x.bar + MoE  # upper limit of 95% CI
[1] 30.94</pre>
```

```
p.hat <- 0.52
SE <- sd(~prop, data = BootP)
SE
[1] 0.04783
MoE <- 2 * SE
MoE
[1] 0.09565
```

Example3.21

Example3.22b

[1] 0.4243 p.hat + MoE [1] 0.6157

The steps used in this example get used in a wide variety of confidence interval situations.

- 1. Compute the statistic from the original sample.
- 2. Create a bootstrap distribution by resampling from the sample.
 - (a) same size samples as the original sample
 - (b) with replacement
 - (c) compute the statistic for each sample

The distribution of these statistics is the bootstrap distribution

- 3. Estimate the standard error SE by computing the standard deviation of the bootstrap distribution.
- 4. 95% CI is

```
statistic \pm 2SE
```

3.4 Bootstrap Confidence Intervals Using Percentiles

Confidence Intervals Based on Bootstrap Percentiles

Example 3.23

Another way to create a 95% confidence interval is to use the middle 95% of the bootstrap distribution. The cdata() function can compute this for us as follows:

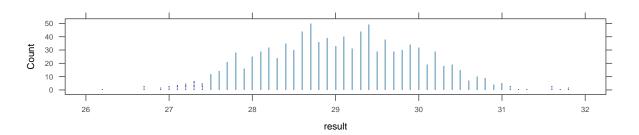
This is not exactly the same as the interval of the original sample, but it is pretty close.

Figure 3.22

dotPlot(~result, width = 0.1, groups = (27.43 <= result & result <= 31.05), data = Bootstrap)</pre>
Figure3.22

Example3.23

p.hat - MoE



Notice the groups= for marking the confidence interval.

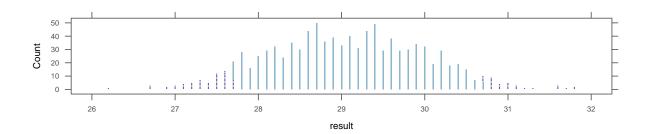
Example 3.24

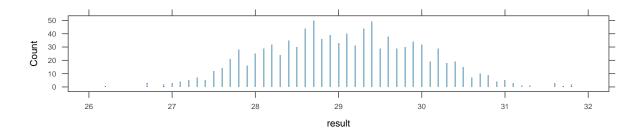
One advantage of this method is that it is easy to change the confidence level.

To make a 90% and 99% confidence interval, we use the middle 90% and 99% of the sample distribution instead.

```
Example3.24
cdata(0.9, result, data = Bootstrap)
low hi central.p
27.61 30.53 0.90
dotPlot(~result, width = 0.1, groups = (27.7 <= result & result <= 30.71), data = Bootstrap)
cdata(0.99, result, data = Bootstrap)
low hi central.p
26.95 31.59 0.99</pre>
```

dotPlot(~result, width = 0.1, groups = (26.98 <= result & result <= 31.63), data = Bootstrap)</pre>

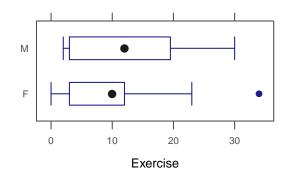




Finding Confidence Intervals for Many Different Parameters

Figure 3.24

bwplot(Gender ~ Exercise, data = ExerciseHours)



Example 3.25

hea	<mark>d</mark> (Exer	ciseHou	urs)						Exampl
Y	ear Ge	nder Ha	and Exe	rcise TV F	ulse Pie	erces			
1	4	М	1	15 5	57	0			
2	2		1	20 14	70	0			
3	3	F	r	2 3	70	2			
4	1	F	1	10 5	66	3			
5	1	Μ	r	8 2	62	0			
6	1	Μ	r	14 14	62	0			
fav	stats(~Exerci	ise G	ender, dat	a = Exe	rciseHours	.)		
	group	min Q1	median	Q3 max	mean	sd n mi	ssing		
1	F	0 3	10	12.00 34	9.4 7	.407 30	0		
2	М	2 3	12	19.25 30	12.4.8	798 20	0		

Figure3.24

```
stat <- diff(mean(Exercise ~ Gender, data = ExerciseHours))
stat
M
3</pre>
```

```
Example3.25b
BootE <- do(3000) * diff(mean(Exercise ~ Gender, data = resample(ExerciseHours)))</pre>
head(BootE, 3)
         М
1 -0.2372
2 5.2394
3 3.1461
                                                                                                        Example3.25c
cdata(0.95, M, data = BootE)
      low
                  hi central.p
   -1.643
               7.490
                          0.950
dotPlot(~M, width = 0.25, cex = 0.75, groups = (-1.717 <= M & M <= 7.633), xlab = "Difference in mean",</pre>
data = BootE)
                       100
                    Count
                        50
                        0
                                                                                10
                                  -5
                                                  0
                                                                 5
                                                   Difference in mean
```

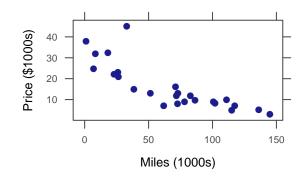
SE <- sd(~M, data = BootE) SE	Example3.25d
[1] 2.369	
stat – 2 * SE	

M -1.739			
stat + 2 * SE			
M 7.739			

Figure 3.26

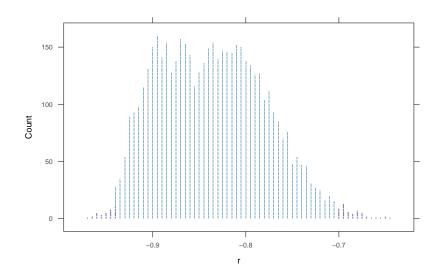
xyplot(Price ~ Miles, ylab = "Price (\$1000s)", xlab = "Miles (1000s)", data = MustangPrice)
Figure3.26
Figure3.26

[1] -0.8246



Example 3.26

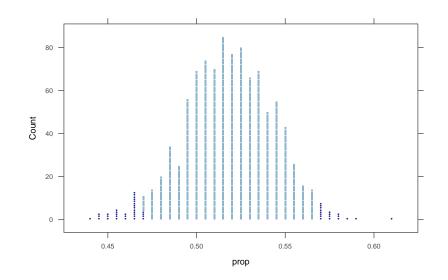
```
BootM <- do(5000) * cor(Price ~ Miles, data = resample((MustangPrice)))</pre>
                                                                                                      Example3.26
head(BootM, 3)
   result
1 -0.7513
2 -0.9226
3 -0.8620
                                                                                                     Example3.26b
cdata(0.98, result, data = BootM)
      low
                  hi central.p
  -0.9377
             -0.7020
                        0.9800
dotPlot(~result, width = 0.005, groups = (-0.94 <= result & result <= -0.705), xlab = "r",</pre>
data = BootM)
```



Another Look at the Effect of Sample Size

Example 3.27

```
Example3.27
BootP400 <- do(1000) * rflip(400, 0.52)
head(BootP400, 3)
    n heads tails prop
1 400
       189
             211 0.4725
2 400
        212
              188 0.5300
3 400
        210
              190 0.5250
cdata(0.95, prop, data = BootP400)
                 hi central.p
      low
   0.4675
             0.5651
                       0.9500
dotPlot(~prop, width = 0.005, groups = (0.472 <= prop & prop <= 0.568), data = BootP400)</pre>
```



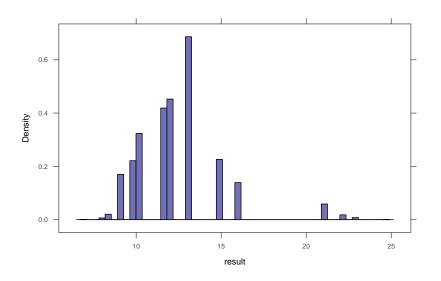
One Caution on Constructing Bootstrap Confidence Intervals

Example 3.28

```
median(~Price, data = MustangPrice)
[1] 11.9
Boot.Mustang <- do(5000) * median(~Price, data = resample(MustangPrice))
head(Boot.Mustang, 3)

    result
1    11.9
2    13.0
3    11.9
histogram(~result, n = 50, data = Boot.Mustang)</pre>
```

Example3.28



This time the histogram does not have the desired shape. There are two problems:

- 1. The distribution is not symmetric. (It is right skewed.)
- 2. The distribution has spikes and gaps.

Since the median must be an element of the sample when the sample size is 25, there are only 25 possible values for the median (and some of these are *very* unlikely.

Since the bootstrap distribution does not look like a normal distribution (bell-shaped, symmetric), we cannot safely use our methods for creating a confidence interval.

Hypothesis Tests

4.1 Introducing Hypothesis Tests

The 4-step outline

The following 4-step outline is a useful way to organize the ideas of hypothesis testing.

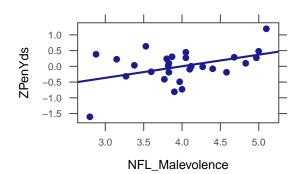
- 1. State the Null and Alternative Hypotheses
- Compute the Test Statistic
 The test statistic is a number that summarizes the evidence
- 3. Determine the p-value (from the Randomization Distribution)
- 4. Draw a conclusion

Null and Alternative Hypotheses

Figure 4.1

xyplot(ZPenYds ~ NFL_Malevolence, type = c("p", "r"), data = MalevolentUniformsNFL)

Figure4.1



4.2 Measuring Evidence with P-values

Randomization distributions are a bit like bootstrap distributions except that instead of resampling from our sample (in an attempt to approximate resampling from the population), we need to sample from a situation in which our null hypothesis is true.

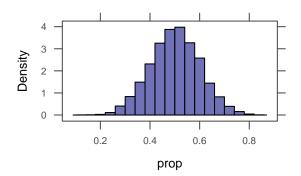
P-values from Randomization Distributions

Example 4.13

Testing one proportion.

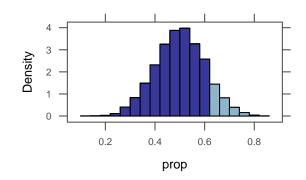
- 1. H_0 : p = 0.5 H_a : p > 0.5
- 2. Test statistic: $\hat{p} = 16/25$ (the sample proportion)
- 3. We can simulate a world in which p = 0.5 using rflip():

```
Example4.13
Randomization.Match <- do(10000) * rflip(25, 0.5) # 25 because n=25
head(Randomization.Match)
   n heads tails prop
               12 0.52
1 25
        13
2 25
         9
               16 0.36
3 25
        14
               11 0.56
4 25
        11
               14 0.44
5 25
              11 0.56
        14
6 25
        14
               11 0.56
histogram(~prop, width = 0.04, data = Randomization.Match)
```



Here we find the proportion of the simulations which resulted in 16 or more matches out of 25, or 0.64 or greater, for the p-value.

```
prop(~(prop >= 0.64), data = Randomization.Match) # 16/25
TRUE
0.1144
histogram(~prop, width = 0.04, groups = (prop >= 0.64), data = Randomization.Match)
```

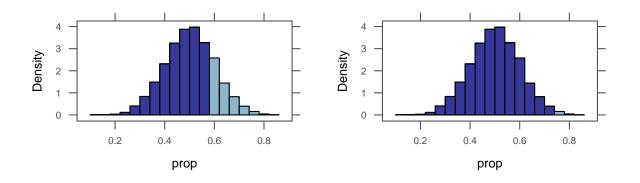


Example 4.15

prop(~(prop >= 0.6), data = Randomization.Match) # 15/25

TRUE
0.2175
prop(~(prop >= 0.76), data = Randomization.Match) # 19/25

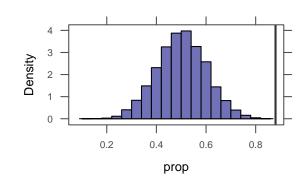
TRUE
0.0081
histogram(~prop, width = 0.04, groups = (prop >= 0.6), data = Randomization.Match)
histogram(~prop, width = 0.04, groups = (prop >= 0.76), data = Randomization.Match)



Example 4.16

TRUE	4.16	Example	!/25) #	data = Randomization.Match)	<pre>prop(~(prop >= 0.88),</pre>
0						TRUE O

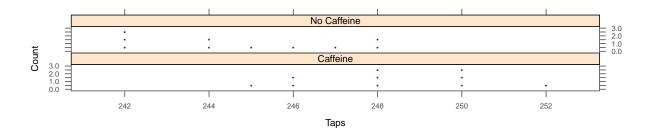
Figure4.10



histogram(~prop, width = 0.04, v = c(0.88), data = Randomization.Match)

Figure 4.10

dotPlot(~Taps | Group, layout = c(1, 2), width = 1, cex = 0.3, data = CaffeineTaps)



Example 4.18

Testing two means.

```
mean(Taps ~ Group, data = CaffeineTaps)
Caffeine No Caffeine
248.3 244.8
diff(mean(Taps ~ Group, data = CaffeineTaps))
No Caffeine
-3.5
```

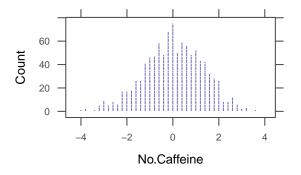
1. $H_0: \mu_1 = \mu_2$ $H_a: \mu_1 > \mu_2$ Example4.18

- 2. Test statistic: $\bar{x}_1 \bar{x}_2 = 3.5$ (the difference in sample means)
- 3. We simulate a world in which $\mu_1 = \mu_2$ or $\mu_1 \mu_2 = 0$:

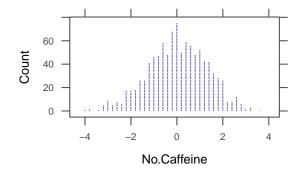
Randomization.Caff <- do(1000) * ediff(mean(Taps ~ shuffle(Group), data = CaffeineTaps)) head(Randomization.Caff, 3)

V1 No.Caffeine 1 NA 2.1 2 NA 0.1 3 NA 3.7

dotPlot(~No.Caffeine, width = 0.2, data = Randomization.Caff)



dotPlot(~No.Caffeine, width = 0.2, groups = (No.Caffeine >= 3.5), data = Randomization.Caff)



P-values and the Alternative Hypothesis

Example 4.19

Testing one proportion.

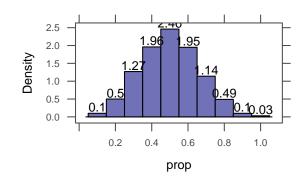
Example4.18c

Example4.19

- 1. $H_0: p = 0.5$ $H_a: p > 0.5$
- 2. Test statistic: $\hat{p} = 0.8, 0.6, 0.4$ (the sample proportion of 8/10, 6/10, 4/10 heads)
- 3. We simulate a world in which p = 0.5:

```
RandomizationDist <- do(1000) * rflip(10, 0.5) # 10 because n=10
head(RandomizationDist)
   n heads tails prop
1 10
         6
               4
                  0.6
2 10
         5
                  0.5
               5
3 10
         5
               5
                  0.5
4 10
         7
                  0.7
               3
5 10
         5
               5
                  0.5
6 10
                  0.5
         5
               5
```

histogram(~prop, label = TRUE, width = 1/10, data = RandomizationDist)



prop(~(prop >= 0.8), data = RandomizationDist)

TRUE
0.057
prop(~(prop >= 0.6), data = RandomizationDist)

TRUE
0.356
prop(~(prop >= 0.4), data = RandomizationDist)

TRUE
0.825

Example 4.20

Testing one proportion.

Last Modified: September 4, 2014

Example4.19b

Example4.20

Example4.20b

- 1. $H_0: p = 0.5$ $H_a: p \neq 0.5$
- 2. Test statistic: $\hat{p} = 0.8$ (the sample proportion of 8/10 heads)
- 3. We use the simulated world in which p = 0.5:

```
prop(~ (prop >= 0.8), data = RandomizationDist)

TRUE
0.057

prop(~ (prop <= 0.2), data = RandomizationDist)

TRUE
0.05

# a 2-sided p-value is the sum of the values above
prop(~ (prop <= 0.2 | prop >= 0.8), data = RandomizationDist)

TRUE
0.107
# We can also approximate the p-value by doubling one side
2 * prop(~prop >= 0.8, data = RandomizationDist)

TRUE
0.114
```

4.3 Determining Statisical Significance

Less Formal Statistical Decisions

Example 4.27

Testing two means.

```
Example4.27
head(Smiles)
  Leniency Group
       7.0 smile
1
2
       3.0 smile
3
       6.0 smile
4
       4.5 smile
5
       3.5 smile
6
       4.0 smile
mean(Leniency ~ Group, data = Smiles)
```

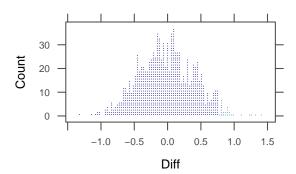
```
neutral smile
  4.118  4.912

diff(mean(Leniency ~ Group, data = Smiles))
smile
```

0.7941

- 1. $H_0: \mu_1 = \mu_2$ $H_a: \mu_1 \neq \mu_2$
- 2. Test statistic: $\bar{x}_1 \bar{x}_2 = 0.79$ (the difference in sample means)
- 3. We simulate a world in which $\mu_1 = \mu_2$:

```
Randomization.Smiles <- do(1000) * diff(mean(Leniency ~ shuffle(Group), data = Smiles))
Lead(Randomization.Smiles, 3)
smile
1 0.29412
2 -0.05882
3 0.08824</pre>
```



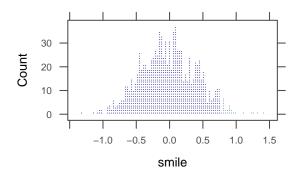
Now we find the p-value to test a difference of 0.76:

Example4.27c

prop(~(smile <= -0.76 | smile >= 0.76), data = Randomization.Smiles)

TRUE
0.062
2 * prop(~smile >= 0.76, data = Randomization.Smiles)
TRUE
0.06

dotPlot(~smile, width = 0.03, cex = 0.5, groups = (smile >= 0.76), data = Randomization.Smiles)



4.4 Creating Randomization Distributions

In order to use these methods to estimate a p-value, we must be able to generate a randomization distribution. In the case of a test with null hypothesis claiming that a proportion has a particular value (e.g, H_0 : p = 0.5), this is pretty easy. If the population has proportion 0.50, we can simulate sampling from that proportion by flipping a fair coin. If the proportion is some value other than 0.50, we simply flip a coin that has the appropriate probability of resulting in heads. So the general template for creating such a randomization distribution is

do(1000) * rflip(n, hypothesized_proportion)

where n is the size of the original sample.

In other situations, it can be more challenging to create a randomization distribution because the null hypothesis does not directly specify all of the information needed to simulate samples.

• $H_0: p_1 = p_2$

This would be simple *if* we new the value of p_1 and p_2 (we could use rflip() twice, once for each group),

• $H_0: \mu = \text{some number}$

Just knowing the mean does not tell us enough about the distribution. We need to know about its shape. (We might need to know the standard deviation, for example, or whether the distribution is skewed.)

• $H_0: \mu_1 \neq \mu_2$ some number.

Now we don't know the common mean and we don't know the things mentioned in the previous example either.

So how do we come up with randomization distribution?

- The main criteria to consider when creating randomization samples for a statistical test are: • Be consistent with the null hypothesis.
 - If we don't do this, we won't be testing our null hypothesis.
 - Use the data in the original sample.
 With luck, the original data will shed light on some aspects of the distribution that are not determined by null hypothesis.
 - Reflect the way the original data were collected.

Randomization Test for a Difference in Proportions: Cocaine Addiction

Data 4.7

Data 4.7 in the text describes some data that are not in a data frame. This often happens when a data set has only categorical variables because a simple table completely describes the distributions involved. Here's the table from the book:¹

	Relapse	No Relapse
Lithium	18	6
Placebo	20	4

Here's one way to create the data in R:

```
Cocaine <- rbind(

do(18) * data.frame( treatment = "Lithium", response="Relapse"),

do(6) * data.frame( treatment = "Lithium", response="No Relapse"),

do(20) * data.frame( treatment = "Placebo", response="Relapse"),

do(4) * data.frame( treatment = "Placebo", response="No Relapse")
```

Example 4.29

Testing two proportions.

¹The book includes data on an additional treatment group which we are omitting here.

Example4.29

Section 4.4b

- 1. $H_0: p_1 = p_2$ $H_a: p_1 < p_2$
- 2. Test statistic: $\hat{p}_1 = \hat{p}_2$ (the difference in sample proportions)
- 3. We simulate a world in which $p_1 = p_2$ or $p_1 p_2 = 0$:

```
Randomization.Coc <- do(5000) * diff(prop(response ~ shuffle(treatment), data = Cocaine)
head(Randomization.Coc)
Relapse.Placebo
1 0.00000
2 0.16667
```

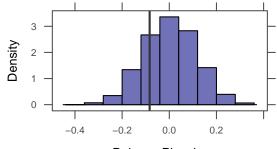
2 -0.16667 3 -0.08333 4 0.25000 5 -0.16667 6 0.00000

prop(~(Relapse.Placebo < -0.0833), data = Randomization.Coc)</pre>

Example4.29c

TRUE 0.3546

histogram(Relapse.Placebo, data = Randomization.Coc, v = c(-0.0833), width = 0.08)



Relapse.Placebo

Example4.31

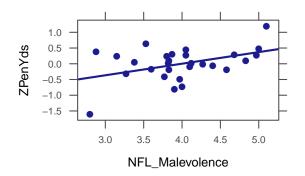
Randomization Test for a Correlation: Malevolent Uniforms and Penalties

Example 4.31

Testing correlation.

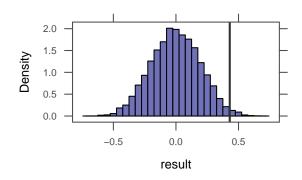
xyplot(ZPenYds ~ NFL_Malevolence, type = c("p", "r"), data = MalevolentUniformsNFL)
cor(ZPenYds ~ NFL_Malevolence, data = MalevolentUniformsNFL)

[1] 0.4298



- 1. $H_0: \rho = 0$ $H_a: \rho > 0$
- 2. Test statistic: r = 0.43 (the sample correlation)
- 3. We simulate a world in which $\rho = 0$:

histogram("result, v = c(0.43), width = 0.05, data = Randomization.Mal)



Randomization Test for a Mean: Body Temperature

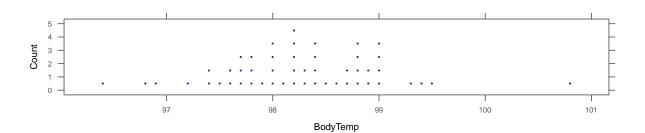
Example 4.33

Testing one mean.

mean(~BodyTemp, data = BodyTemp50)

[1] 98.26

dotPlot(~BodyTemp, v = c(98.26), width = 0.1, cex = 0.2, data = BodyTemp50)



- 1. $H_0: \mu = 98.6$ $H_a: \mu \neq 98.6$
- 2. Test statistic: $\bar{x} = 98.26$ (the sample mean) Notice that the test statistic differs a bit from 98.6

```
98.6 - mean(~BodyTemp, data = BodyTemp50)
[1] 0.34
```

But might this just be random variation? We need a randomization distribution to compare against.

105

Example4.33

Example4.33b

3. If we resample, the mean will not be 98.6. But we shift the distribution a bit, then we will have the desired mean while preserving the shape of the distribution indicated by our sample. We simulate a world in which $\mu = 98.6$:

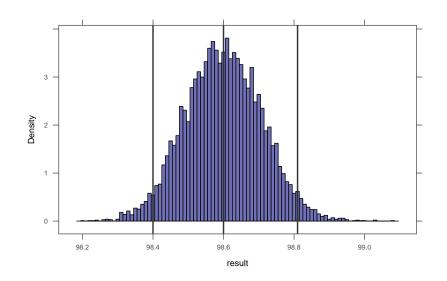
```
Example4.33c
Randomization.Temp <- do(10000) * (mean(~BodyTemp, data = resample(BodyTemp50)) + 0.34)
head(Randomization.Temp, 3)
  result
1 98.61
2
  98.52
3 98.61
mean(~result, data = Randomization.Temp)
[1] 98.6
cdata(0.95, result, data = Randomization.Temp)
      low
                 hi central.p
    98.39
              98.81
                      0.95
```

From this we can estimate the p-value:

prop(~abs(result - 98.6) > 0.34, data = Randomization.Temp)

TRUE 0.0019

histogram(~result, width = 0.01, v = c(98.4, 98.6, 98.81), data = Randomization.Temp)



How do we interpret this (estimated) p-value of 0? Is it impossible to have a sample mean so far from 98.6 if the true population mean is 98.6? No. This merely means that we didn't see any such cases *in our 10000 randomization samples*. We might estimate the p-value as p < 0.001. Generally, to more accurately estimate small p-values, we must use many more randomization samples.

Example4.33d

Example 4.33: A different approach

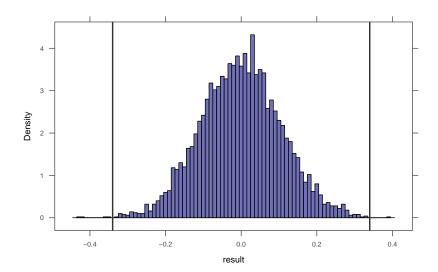
An equivalent way to do the preceding test is based on a different way of expressing our hypotheses.

- 1. $H_0: \mu 98.6 = 0$ $H_a: \mu - 98.6 \neq 0$
- 2. Test statistic: $\bar{x} 98.6 = -0.34$
- 3. We we create a randomization distribution centered at $\mu 98.6 = 0$:

```
Randomization.Temp2 <- do(5000) * (mean(~BodyTemp, data = resample(BodyTemp50)) - 98.26)
Example4.33e
head(Randomization.Temp2, 3)
result
1 -0.194
2 0.050
3 -0.094
mean(~result, data = Randomization.Temp2)
[1] -0.0006556</pre>
```

From this we can estimate the p-value:

prop(~abs(result) > 0.34, data = Randomization.Temp2)
TRUE
0.001
histogram(~result, width = 0.01, v = c(0.34, -0.34), data = Randomization.Temp2)



Often there are multiple ways to express the same hypothesis test.

Example4.33f,

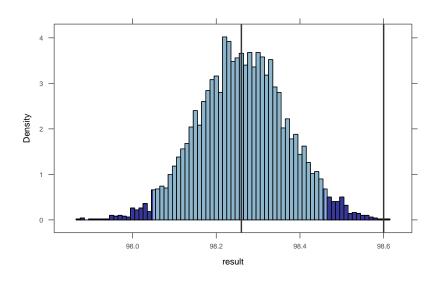
4.5 Confidence Intervals and Hypothesis Tests

If your randomization distribution is centered at the wrong value, then it isn't simulating a world in which the null hypothesis is true. This would happen, for example, if we got confused about randomization vs. bootstrapping.

Randomization and Bootstrap Distributions

Figure 4.32

```
Boot.Temp <- do(5000) * mean(~BodyTemp, data = resample(BodyTemp50))</pre>
                                                                                                     Figure4.32
head(Boot.Temp, 3)
  result
1 98.18
2 98.25
3 98.08
mean(~result, data = Boot.Temp)
[1] 98.26
cdata(0.95, result, data = Boot.Temp)
      low
                  hi central.p
    98.05
               98.47
                          0.95
histogram(~result, width = 0.01, v = c(98.26, 98.6), groups = (98.05 <= result & result <=</pre>
    98.46), data = Boot.Temp)
```

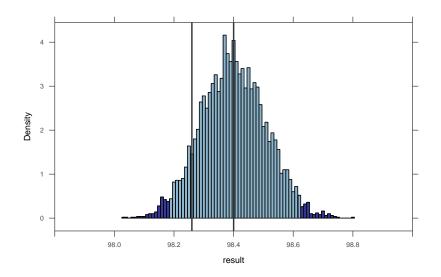


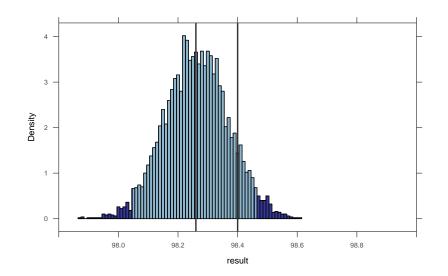
Notice that the distribution is now centered at our test statistic instead of at the value from the null hypothesis.

Example 4.35

- 1. $H_0: \mu = 98.4$
 - $H_a: \mu \neq 98.4$
- 2. Test statistic: $\bar{x} = 98.26$ (the sample mean)
- 3. We simulate a world in which $\mu = 98.4$:

```
Example4.35
Randomization.Temp3 <- do(5000) * (mean(~BodyTemp, data = resample(BodyTemp50)) + 0.14)
head(Randomization.Temp3, 3)
  result
1 98.36
2 98.45
3 98.53
mean(~result, data = Randomization.Temp3)
[1] 98.4
cdata(0.95, result, data = Randomization.Temp3)
      low
                 hi central.p
    98.19
                         0.95
              98.61
histogram(~result, width = 0.01, v = c(98.26, 98.4), groups = (98.19 <= result & result <=</pre>
    98.62), xlim = c(97.8, 99), data = Randomization.Temp3) # randomization
histogram(~result, width = 0.01, v = c(98.26, 98.4), groups = (98.05 <= result & result <=</pre>
    98.46), xlim = c(97.8, 99), data = Boot.Temp)  # bootstrap
```





Approximating with a Distribution

5.1 Normal Distributions

Density Curves

Example 5.1

Example5.1 Bootstrap <- do(1000) * mean(~Time, data = resample(CommuteAtlanta))</pre> head(Bootstrap, 3) result 1 28.52 2 29.24 3 29.16 histogram(~result, density = TRUE, data = Bootstrap) densityplot(~result, data = Bootstrap) 0.4 0.4 Density Density 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 28 28 32 26 30 32 26 30 result result Example5.1b prop(~(result <= 30), data = Bootstrap) # proportion less than 30 min</pre>

4

```
TRUE

0.823

prop(~(result >= 31), data = Bootstrap) # proportion greater than 31 min

TRUE

0.023

prop(~(result >= 30 & result <= 31), data = Bootstrap) # proportion between 30 and 31 min

TRUE

0.155
```

Normal Distributions

Normal distributions

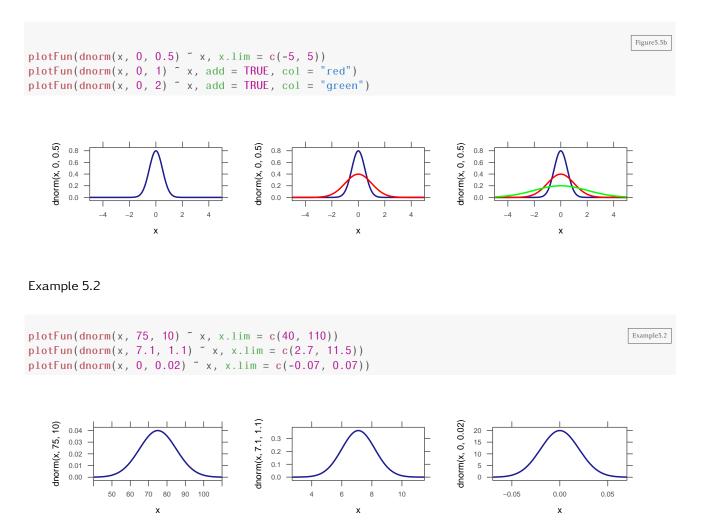
- are symmetric, unimodel, and bell-shaped
- can have any combination of mean and standard deviation (as long as the standard deviation is positive)
- satisfy the 68–95–99.7 rule:

Approximately 68% of any normal distribution lies within 1 standard deviation of the mean. Approximately 95% of any normal distribution lies within 2 standard deviations of the mean. Approximately 99.7% of any normal distribution lies within 3 standard deviations of the mean.

Many naturally occurring distributions are approximately normally distributed. Normal distributions are also an important part of statistical inference.

Figure 5.5

```
Figure5.5
plotFun(dnorm(x, 0, 1) ~ x, x.lim = c(-5, 6))
plotFun(dnorm(x, 2, 1) ~ x, add = TRUE, col = "red")
         0.4
                                                                         0.4
    dnorm(x, 0, 1)
                                                                    dnorm(x, 0, 1)
         0.3
                                                                         0.3
         0.2
                                                                         0.2
         0.1
                                                                          0.1
          0.0
                                                                          0.0
                          -2
                                   0
                                           2
                                                                                                   0
                                                                                                           2
                   -4
                                                   4
                                                                                   -4
                                                                                           -2
                                                                                                                   4
                                     Х
                                                                                                     х
```



Finding Normal Probabilities and Percentiles

The two main functions we need for working with normal distributions are pnorm() and qnorm(). pnorm() computes the proportion of a normal distribution below a specified value:

pnorm(x,mean=
$$\mu$$
, sd= σ) = Pr($X \le x$)

when $X \sim \text{Norm}(\mu, \sigma)$.

We can obtain arbitrary probabilities using pnorm()

Example 5.3

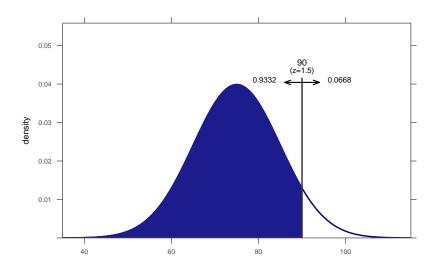
pnorm(90, 75, 10, lower.tail = FALSE) # proportion of scores above 90

[1] 0.06681

xpnorm(90, 75, 10, lower.tail = FALSE)

Example5.3

If X ~ N(75,10), then P(X <= 90) = P(Z <= 1.5) = 0.9332 P(X > 90) = P(Z > 1.5) = 0.0668 [1] 0.06681



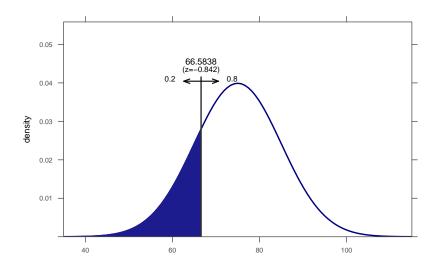
The xpnorm() function gives a bit more verbose output and also gives you a picture. Notice the lower.tail=FALSE. This is added because the default for pnorm() and xpnorm() finds the lower tail, not the upper tail. However, we can also subtract the proportion of the lower tail from 1 to find the the proportion of the upper tail.

Example 5.4

qnorm() goes the other direction: You provide the quantile (percentile expressed as a decimal) and R gives you the value.

```
qnorm(0.2, 75, 10) # 20th percentile in Norm(75, 10)
[1] 66.58
xqnorm(0.2, 75, 10)
P(X <= 66.5837876642709) = 0.2
P(X > 66.5837876642709) = 0.8
[1] 66.58
```

Example5.4



Standard Normal N(0,1)

Because probabilities in a normal distribution depend only on the number of standard deviations above and below the mean, it is useful to define *Z*-scores (also called standardized scores) as follows:

$$Z\text{-score} = \frac{\text{value} - \text{mean}}{\text{standard deviation}}$$

If we know the population mean and standard deviation, we can plug those in. When we do not, we will use the mean and standard deviation of a random sample as an estimate.

Z-scores provide a second way to compute normal probabilities.

Example 5.5

```
z30 <- (30 - 29.11) / 0.93; z30 \# z-score for 30 min

[1] 0.957

z31 <- (31 - 29.11) / 0.93; z31 \# z-score for 31 min

[1] 2.032

xpnorm(c(30, 31), 29.11, 0.93) # original normal distribution proportion between 30 and 31 min

If X ^{-} N(29.11,0.93), then

P(X <= 30) = P(Z <= 0.957) = 0.8307

P(X <= 31) = P(Z <= 0.957) = 0.1693

P(X > 30) = P(Z > 0.957) = 0.1693

P(X > 31) = P(Z > 2.032) = 0.0211

[1] 0.8307 0.9789
```

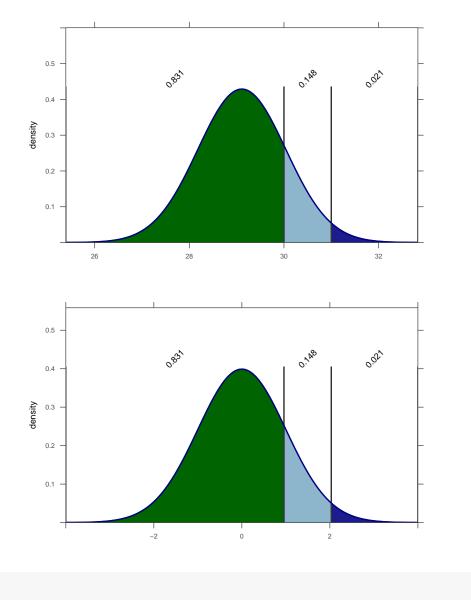
xpnorm(c(z30, z31))

standardized distribution proportion between 30 and 31 min

If X $\tilde{}$ N(0,1), then

pnorm(z31) - pnorm(z30)

[1] 0.1482

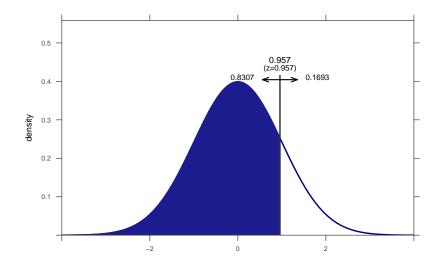


proportion with z-score below 0.957

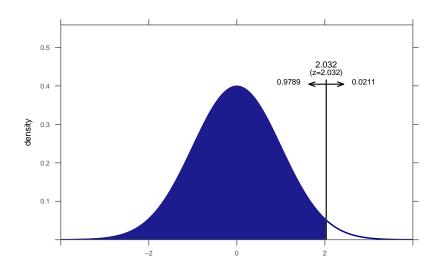
Example5.5b

If X ~ N(0,1), then
P(X <= 0.957) = P(Z <= 0.957) = 0.8307
P(X > 0.957) = P(Z > 0.957) = 0.1693
[1] 0.8307
xpnorm(2.032, lower.tail = FALSE) # proportion with z-score above 2.032
If X ~ N(0,1), then
P(X <= 2.032) = P(Z <= 2.032) = 0.9789
P(X > 2.032) = P(Z > 2.032) = 0.0211
[1] 0.02108
pnorm(30, 29.11, 0.93)
[1] 0.8307
pnorm(31, 29.11, 0.93, lower.tail = FALSE)

[1] 0.02106



117



Example 5.6

z <- qnorm(0.2) z	Example5.6
[1] -0.8416	
75 + z * 10	
[1] 66.58	

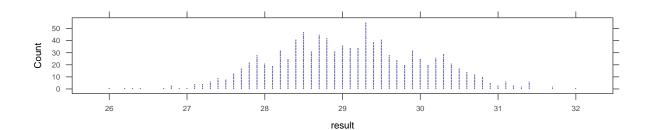
5.2 Confidence Intervals and P-values Using Normal Distributions

Confidence Intervals Based on a Normal Distribution

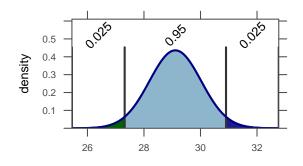
Example 5.7

Bootstrap <- do(1000) * mean(~Time, data = resample(CommuteAtlanta))
dotPlot(~result, width = 0.1, data = Bootstrap)</pre>

Example5.7



xqnorm(c(0.025, 0.975), 29.11, 0.915) # 95% confidence interval for the normal distribution



qnorm(0.005, 29.11, 0.915) # lower endpoint for 99% confidence interval

[1] 26.75

qnorm(0.995, 29.11, 0.915) # upper endpoint for 99% confidence interval

[1] 31.47

qnorm(0.05, 29.11, 0.915) # lower endpoint for 90% confidence interval

[1] 27.6

qnorm(0.95, 29.11, 0.915) # upper endpoint for 90% confidence interval

[1] 30.62

Example5.7b

Example5.7c

Example5.8

Example 5.8

qnorm(0.005, 13.1, 0.2) # lower endpoint for 99% confidence interval

[1] 12.58

qnorm(0.995, 13.1, 0.2) # upper endpoint for 99% confidence interval

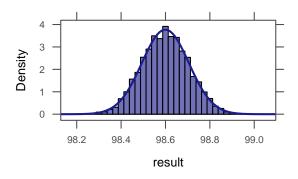
[1] 13.62

P-values Based on a Normal Distribution

Example 5.9

```
Randomization.Temp <- do(10000) * (mean(~BodyTemp, data = resample(BodyTemp50)) + 0.34)

histogram(~result, width = 0.025, fit = "normal", data = Randomization.Temp)
```



Example5.9b pnorm(98.26, 98.6, 0.1066) [1] 0.0007126 [1] 0.001425 z <- (98.26 - 98.6)/0.1066 z [1] -3.189

<pre>pnorm(z)</pre>	
[1] 0.0007126	
2 * pnorm(z)	
[1] 0.001425	

Example 5.10

pnorm(0.66, 0.65, 0.013, lower.tail = FALSE)

Example5.10

[1] 0.2209

Inference for Means and Proportions

6.1 Distribution of a Sample Proportion

When sampling distributions, bootstrap distributions, and randomization distributions are well approximated by normal distributions, and when we have a way of computing the standard error, we can use normal distributions to compute confidence intervals and p-values using the following general templates:

• confidence interval:

statistic \pm critical value $\cdot SE$

• hypothesis testing:

test statistic = $\frac{\text{statistic} - \text{null parameter}}{SE}$

Example 6.1

```
SE <- sqrt(0.25 * (1 - 0.25)/50)
SE
[1] 0.06124
SE <- sqrt(0.25 * (1 - 0.25)/200)
SE
[1] 0.03062
SE <- sqrt(0.4 * (1 - 0.4)/50)
SE
[1] 0.06928</pre>
```

Example6.1

How Large a Sample Size is Needed?

Figure 6.2

P.05 <- do(2000) * rflip(50, 0.05) dotPlot(~prop, width = 0.02, cex = 25, data = P.05) P.10 <- do(2000) * rflip(50, 0.1) dotPlot(~prop, width = 0.02, cex = 15, data = P.10) P.25 <- do(2000) * rflip(50, 0.25) dotPlot(~prop, width = 0.02, cex = 10, data = P.25) P.50 <- do(2000) * rflip(50, 0.5) dotPlot(~prop, width = 0.02, cex = 5, data = P.50) P.90 <- do(2000) * rflip(50, 0.9) dotPlot(~prop, width = 0.02, cex = 10, data = P.90) P.99 <- do(2000) * rflip(50, 0.99) dotPlot(~prop, width = 0.02, cex = 25, data = P.99)

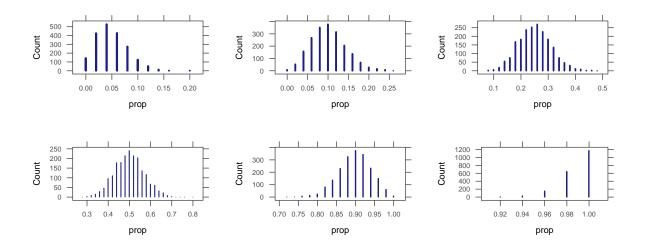


Figure 6.3

n10 <- do(2000) * rflip(10, 0.1) dotPlot(~prop, width = 0.1, cex = 25, data = n10) n25 <- do(2000) * rflip(25, 0.1) dotPlot(~prop, width = 0.04, cex = 10, data = n25) n200 <- do(2000) * rflip(200, 0.1) dotPlot(~prop, width = 0.005, cex = 5, data = n200)

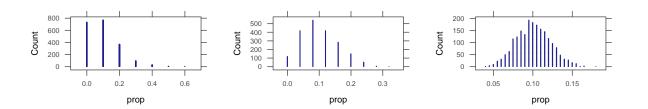


Figure6.03

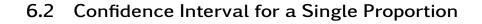
Figure6.02

Example 6.2

p.hat <- 0.80; p.hat [1] 0.8 p.hat * 400 # check >= 10 [1] 320 (1 - p.hat) * 400# check >= 10 [1] 80 SE <- sqrt(.80 * .20 / 400); SE [1] 0.02

Figure 6.4

plotFun(dnorm(x, 0.8, 0.02) ~ x, x.lim = c(0.72, 0.88))



Confidence Interval for a Single Proportion

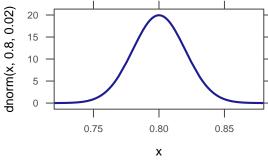
Example 6.3

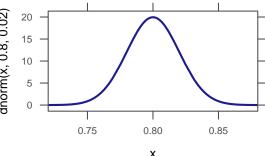
p.hat <- 52/100; p.hat

Example6.2

Figure6.4

Example6.3





[1] 0.52
SE <- sqrt(p.hat * (1 - p.hat) / 100); SE # est. SE
[1] 0.04996
p.hat - 1.96 * SE # lower end of CI
[1] 0.4221
p.hat + 1.96 * SE # upper end of CI
[1] 0.6179</pre>

R can automate finding the confidence interval. Notice the **correct** = FALSE in the second line. The default for the proportion test includes a continuity correction for more accurate results. You can perform the test without the correction for answers closer to the ones in the textbook.

Example 6.4

```
p.hat <- 0.28; p.hat
[1] 0.28
SE <- sqrt( p.hat * (1 - p.hat) / 800 ); SE  # est. SE
[1] 0.01587
p.hat - 1.96 * SE  # lower end of CI
[1] 0.2489
p.hat + 1.96 * SE  # upper end of CI</pre>
```

Example6.3b

```
[1] 0.3111
                                            # 224 = 0.28 * 800
confint(prop.test(224, 800))
    p lower upper level
0.2800 0.2494 0.3128 0.9500
                                                                                            Example6.4b
p.hat <- 0.82; p.hat</pre>
[1] 0.82
SE <- sqrt( p.hat * (1 - p.hat) / 800 ); SE # est. SE
[1] 0.01358
p.hat - 1.96 * SE
                                             # lower end of CI
[1] 0.7934
p.hat + 1.96 * SE
                                             # upper end of CI
[1] 0.8466
                                 # 656 = 0.82 * 800
confint(prop.test(656, 800))
    p lower upper level
0.8200 0.7912 0.8457 0.9500
```

Determining Sample Size for Estimating a Proportion

Example 6.5

```
z.star <- qnorm(0.995)
z.star # critical value for 99% confidence
[1] 2.576
p.hat <- 0.28
p.hat
[1] 0.28
n <- ((z.star/0.01)^2) * p.hat * (1 - p.hat)
n</pre>
```

[1] 13376

Example 6.6

```
z.star <- qnorm(0.975)
z.star # critical value for 95% confidence
[1] 1.96
p.hat <- 0.5
p.hat
[1] 0.5
n <- ((z.star/0.03)^2) * p.hat * (1 - p.hat)
n
[1] 1067</pre>
```

6.3 Test for a Single Proportion

Example 6.7

- 1. $H_0: p = 0.20$ $H_a: p < 0.20$
- 2. Test statistic: $\hat{p} = 0.19$ (the sample approval rating)
- 3. Test for a single proportion:

```
p.hat <- 0.19
p.hat
[1] 0.19
p <- 0.2
p
[1] 0.2
p * 1013  # check >= 10
[1] 202.6
(1 - p) * 1013  # check >= 10
[1] 810.4
```

Example6.6

Example6.7

```
SE <- sqrt(p * (1 - p)/1013)
SE
[1] 0.01257
z <- (p.hat - p)/SE
z
[1] -0.7957
pnorm(z)
[1] 0.2131</pre>
```

Again, R can automate the test for us.

```
prop.test(192, 1013, alt = "less", p = 0.2) # 192 = 0.19 * 1013
1-sample proportions test with continuity correction
data: x and n
X-squared = 0.6294, df = 1, p-value = 0.2138
alternative hypothesis: true p is less than 0.2
95 percent confidence interval:
    0.0000 0.2111
sample estimates:
    p
0.1895
```

Notice the "less" for the alternative hypothesis because this is a lower tail alternative.

Example 6.8

Example6.7b

```
SE <- sqrt(p * (1 - p) / 119); SE
[1] 0.04321
z <- (p.hat - p) / SE; z
[1] 5.121
                # large side (rounded)
pnorm(z)
[1] 1
1 - pnorm(z)
                       # small side (less rounding)
[1] 1.521e-07
2 * (1 - pnorm(z))  # p-value = 2 * small side
[1] 3.042e-07
prop.test(66, 119, p=1/3)
1-sample proportions test with continuity correction
data: x and n
X-squared = 25.24, df = 1, p-value = 5.072e-07
alternative hypothesis: true p is not equal to 0.3333
95 percent confidence interval:
0.4609 0.6448
sample estimates:
    р
0.5546
```

Example 6.9

p.hat <- 8/9 p.hat	Example6.9
[1] 0.8889	
p <- 0.5 p	
[1] 0.5	
p * 9 # check >= 10	

[1] 4.5

```
Randomization <- do(1000) * rflip(9, 0.5)
head(Randomization, 3)

n heads tails prop
1 9 6 3 0.6667
2 9 5 4 0.5556
3 9 6 3 0.6667

prop(~(prop >= p.hat), data = Randomization)
TRUE
0.022
```

6.4 Distribution of a Sample Mean

Computing the Standard Error

Example 6.10

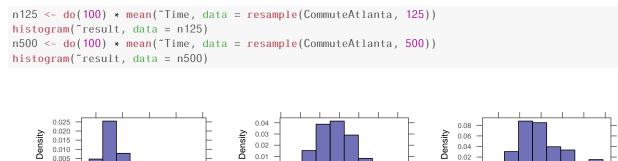
```
SE <- 32000/sqrt(100)
SE
[1] 3200
SE <- 32000/sqrt(400)
SE
[1] 1600</pre>
```

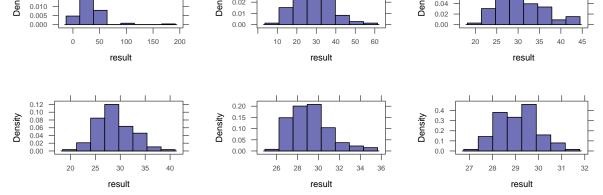
How Large a Sample Size is Needed?

Figure 6.6

```
n1 <- do(100) * mean(~Time, data = resample(CommuteAtlanta, 1))
histogram(~result, data = n1)
n5 <- do(100) * mean(~Time, data = resample(CommuteAtlanta, 5))
histogram(~result, data = n5)
n15 <- do(100) * mean(~Time, data = resample(CommuteAtlanta, 15))
histogram(~result, data = n15)
n30 <- do(100) * mean(~Time, data = resample(CommuteAtlanta, 30))
histogram(~result, data = n30)</pre>
```

Example6.9b





The t-Distribution

If we are working with one quantitative variable, we can compute confidence intervals and p-values using the following standard error formula:

$$SE = \frac{\sigma}{\sqrt{n}}$$

Once again, there is a small problem: we won't know σ . So we will estimate σ using our data:

$$SE \approx \frac{s}{\sqrt{n}}$$

Unfortunately, the distribution of

$$\frac{\overline{x} - \mu}{s/\sqrt{n}}$$

does not have a normal distribution. Instead the distribution is a bit "shorter and fatter" than the normal distribution. The correct distribution is called the t-distribution with n-1 degrees of freedom. All t-distributions are symmetric and centered at zero. The smaller the degrees of freedom, the shorter and fatter the t-distribution.

Example 6.11

```
df <- 50 - 1
df
[1] 49
SE <- 10.5/sqrt(50)
SE
[1] 1.485
```

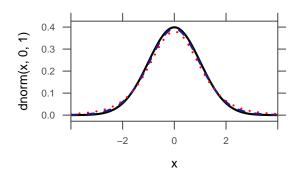
Example6.11

df <- 8 - 1 df [1] 7 SE <- 1.25/sqrt(8) SE

[1] 0.4419

Figure 6.8

```
plotFun(dnorm(x, 0, 1) ~ x, x.lim = c(-4, 4), col = "black")
plotFun(dt(x, df = 15) ~ x, add = TRUE, lty = 2)
plotFun(dt(x, df = 5) ~ x, add = TRUE, lty = 3, col = "red")
```



Example 6.12

qt(0.975, df = 15)

[1] 2.131

pt(1.5, df = 15, lower.tail = FALSE)

[1] 0.07718

Similar to the normal distribution, the function for t-distribution is set to find probability of the lower tail.

gnorm	0.975

Example6.12b

Example6.12

Example6.11b

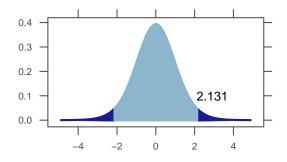
Figure6.08

[1] 1.96

pnorm(1.5, lower.tail = FALSE)

[1] 0.06681

Figure 6.9



plotFun(dt(x, df = 15) ~ x, x.lim = c(-4, 4))
plotDist("t", params = list(df = 15), type = c("h", "l"), groups = x > 1.5, lty = 1)
ladd(grid.text("1.5", 1.5, 0.2, default.units = "native", hjust = 0))

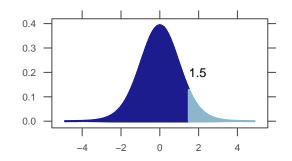


Figure6.09b

6.5 Confidence Interval for a Mean Using the t-Distribution

Confidence Interval for a Mean Using the t-Distribution

Example 6.13

```
head(Flight179, 3)

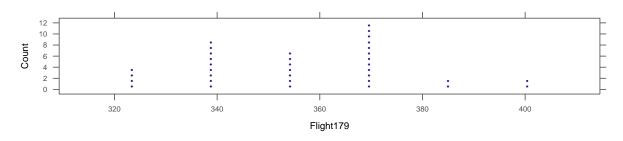
Date Flight179 Flight180 MDY

1 01/05/2010 368 308 2010-01-05

2 01/15/2010 370 292 2010-01-15

3 01/25/2010 354 290 2010-01-25
```

dotPlot(~Flight179, cex = 0.5, data = Flight179) # to check for normality



RStudio can do all of the calculations for you if you give it the raw data:

```
favstats(~Flight179, data = Flight179)
                      Q3 max mean
 min
        Q1 median
                                       sd n missing
 330 341.5 358.5 370.2 407 357.9 20.18 36
                                                    0
t.test(~Flight179, data = Flight179)
One Sample t-test
data: data$Flight179
t = 106.4, df = 35, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to \ensuremath{\mathsf{0}}
95 percent confidence interval:
 351.0 364.7
sample estimates:
mean of x
   357.9
```

You can also zoom in just the information you want:

Example6.13

Example6.13b

<pre>confint(t.test(~Flight179,</pre>	data = Flight179))

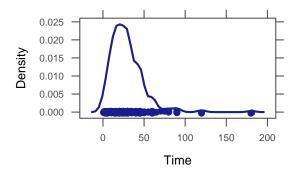
mean of x	lower	upper	level
357.86	351.03	364.69	0.95

Example 6.14

head(CommuteAtlanta, 3)

	City	Age	Distance	Time	Sex
1	Atlanta	19	10	15	М
2	Atlanta	55	45	60	М
3	Atlanta	48	12	45	М

densityplot(~Time, data = CommuteAtlanta) # to check for normality



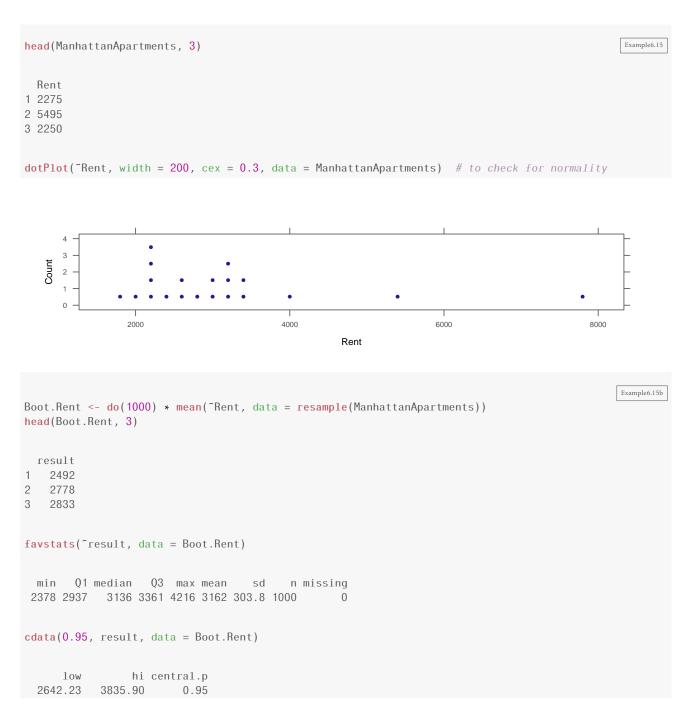
favstats(~Time, data = CommuteAtlanta) min Q1 median Q3 max mean sd n missing 1 15 25 40 181 29.11 20.72 500 0 confint(t.test(~Time, conf.level = 0.99, data = CommuteAtlanta)) mean of x lower upper level 29.11 26.71 31.51 0.99 confint(t.test(~Time, conf.level = 0.95, data = CommuteAtlanta)) mean of x lower upper level 27.29 0.95 29.11 30.93

Example6.14b

Example6.14

Example6.13c

Example 6.15



Determining Sample Size for Estimating a Mean

Example 6.16

```
n <- (1.96 * 20.18/2)^2
n
```

Example6.17

[1] 391.1

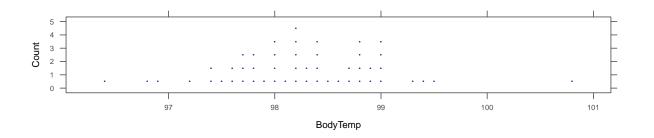
6.6 Test for a Single Mean

Example 6.17

head(BodyTemp50)

	BodyTemp	Pulse	Gender	Sex
1	97.6	69	0	Female
2	99.4	77	1	Male
3	99.0	75	0	Female
4	98.8	84	1	Male
5	98.0	71	0	Female
6	98.9	76	1	Male

dotPlot(~BodyTemp, cex = 0.15, width = 0.1, data = BodyTemp50) # to check for normality

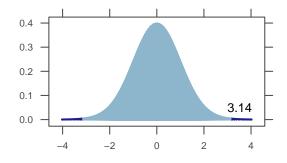


```
Example6.17b
favstats(~BodyTemp, data = BodyTemp50)
 min Q1 median Q3 max mean
                                      sd n missing
 96.4 97.8 98.2 98.8 100.8 98.26 0.7653 50
                                                  0
t.test(~BodyTemp, mu = 98.6, data = BodyTemp50)
One Sample t-test
data: data$BodyTemp
t = -3.141, df = 49, p-value = 0.002851
alternative hypothesis: true mean is not equal to 98.6
95 percent confidence interval:
98.04 98.48
sample estimates:
mean of x
   98.26
```

pval(t.test(~BodyTemp, mu = 98.6, data = BodyTemp50)) # to find the p-value directly

p.value 0.002851

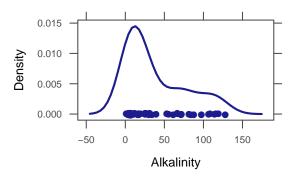
Figure 6.17



Example 6.18

h	ead	FloridaLa	kes, 3)							Example6.18
	ID	Lake	Alkalinity	pН	Calcium	Chlorophyll	AvgMercury	NumSamples	MinMercury	
1	1	Alligator	5.9	6.1	3.0	0.7	1.23	5	0.85	
2	2	Annie	3.5	5.1	1.9	3.2	1.33	7	0.92	
З	3	Apopka	116.0	9.1	44.1	128.3	0.04	6	0.04	
	Max	Mercury T	hreeYrStdMe	rcury	/ AgeData	a				
1		1.43		1.53	3	1				
2		1.90		1.33	3 ()				
З		0.06		0.04	1 ()				
c	ensi	typlot(~A	lkalinity, (data	= Florid	daLakes) #	to check fo	r normality		

Example6.18b



```
favstats(~Alkalinity, data = FloridaLakes)
 min Q1 median Q3 max mean sd n missing
 1.2 6.6
          19.6 66.5 128 37.53 38.2 53
                                            0
t.test(~Alkalinity, alt = "greater", mu = 35, data = FloridaLakes)
One Sample t-test
data: data$Alkalinity
t = 0.4822, df = 52, p-value = 0.3159
alternative hypothesis: true mean is greater than 35
95 percent confidence interval:
28.74 Inf
sample estimates:
mean of x
```

Notice the "greater" for the alternative hypothesis.

Distribution of Differences in Proportions 6.7

Example 6.19

37.53

```
OneTrueLove <- read.file("OneTrueLove.csv")</pre>
head(OneTrueLove)
  Gender Response
1
   Male
            Agree
2
    Male
            Agree
3
    Male
            Agree
4
   Male
            Agree
5
   Male
            Agree
6
   Male
```

Agree

Example6.19

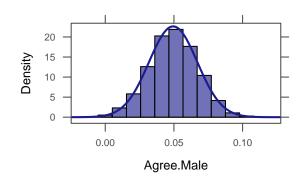
tally(Response ~ Gender, format = "count", margins = TRUE, data = OneTrueLove) Gender Response Female Male Agree 363 372 Disagree 1005 807 Don't know 44 34 Total 1412 1213 prop(Response ~ Gender, data = OneTrueLove) Agree.Female Agree.Male 0.2571 0.3067 diff(prop(Response ~ Gender, data = OneTrueLove)) Agree.Male 0.0496

Figure 6.20

Boot.Love <- do(5000) * diff(prop(Response ~ Gender, data = resample(OneTrueLove)))
head(Boot.Love, 3)</pre>

Agree.Male 1 0.04922 2 0.02343 3 0.04922

histogram(~Agree.Male, fit = "normal", data = Boot.Love)



©2014

Figure6.20

Example6.20

Data6.3

```
SE <- sqrt(0.257 * (1 - 0.257)/1412 + 0.307 * (1 - 0.307)/1213)
SE
```

[1] 0.01762

6.8 Confidence Interval for a Difference in Proportions

Data 6.3

success <- c(158, 109)
n <- c(444, 922)</pre>

Example 6.21

```
success <- c(158, 109)
n <- c(444, 922)
prop.test(success, n, conf.level = 0.9)
2-sample test for equality of proportions with continuity correction
data: x and n
X-squared = 106.1, df = 1, p-value < 2.2e-16
alternative hypothesis: two.sided
90 percent confidence interval:
0.1947 0.2806
sample estimates:
prop 1 prop 2
0.3559 0.1182</pre>
```

6.9 Test For a Difference in Proportions

Data 6.4

```
SplitSteal <- rbind(
  do(187) * data.frame( agegroup = "Under40", decision = "Split"),
  do(195) * data.frame( agegroup = "Under40", decision = "Steal"),
  do(116) * data.frame( agegroup = "Over40", decision = "Split"),
  do(76) * data.frame( agegroup = "Over40", decision = "Steal")
  )
```

Data6.4

Example 6.22

Split 0.5279

Example 6.23

```
diff <- diff(prop(decision ~ agegroup, data = SplitSteal))
diff
Split.Over40
            0.1146
prop.test(decision ~ agegroup, data = SplitSteal)
2-sample test for equality of proportions with continuity correction
data: t(table_from_formula)
X-squared = 6.286, df = 1, p-value = 0.01217
alternative hypothesis: two.sided
95 percent confidence interval:
            -0.2040 -0.0253
sample estimates:
    prop 1 prop 2
0.4895 0.6042</pre>
```

6.10 Distribution of Differences in Means

Figure 6.21

```
BootE <- do(2000) * diff(mean(Exercise ~ Gender, data = resample(ExerciseHours)))

head(BootE, 3)

M

1 4.3167

2 3.7793

3 0.7435
```

Example6.22

histogram(~M, width = 0.5, fit = "normal", data = BootE)

Density

0.15

0.10 0.05 0.00

Random.Smiles <- do(2000) * diff(mean(Leniency ~ shuffle(Group), data = Smiles))
head(Random.Smiles, 3)</pre>

smile 1 -0.08824 2 0.11765

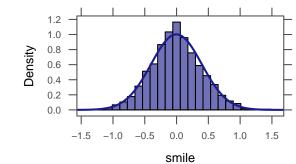
3 0.44118

histogram(~smile, n = 24, , fit = "normal", data = Random.Smiles)

Example 6.24

favstats(Exercise ~ Gender, data = ExerciseHours)
.group min Q1 median Q3 max mean sd n missing
1 F 0 3 10 12.00 34 9.4 7.407 30 0
2 M 2 3 12 19.25 30 12.4 8.798 20 0

Figure6.21b

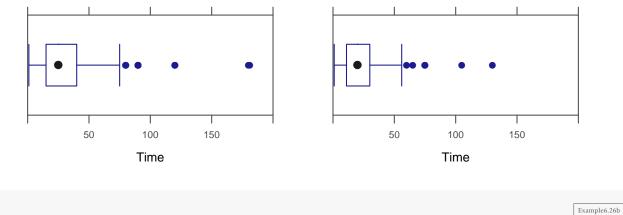



```
SE <- sqrt(8.8<sup>2</sup>/20 + 7.41<sup>2</sup>/30)
SE
[1] 2.388
favstats(Leniency ~ Group, data = Smiles)
    .group min Q1 median Q3 max mean sd n missing
1 neutral 2.0 3.0 4.00 4.875 8 4.118 1.523 34 0
2 smile 2.5 3.5 4.75 5.875 9 4.912 1.681 34 0
SE <- sqrt(1.68<sup>2</sup>/34 + 1.52<sup>2</sup>/34)
SE
[1] 0.3885
```

6.11 Confidence Interval for a Difference in Means

Example 6.26

```
head(CommuteStLouis)
                                                                                          Example6.26
      City Age Distance Time Sex
1 St. Louis 52 10 20 M
               35 40 F
40 45 F
0 2 M
15 25 M
7 12 M
2 St. Louis 21
3 St. Louis 23
4 St. Louis 38
5 St. Louis 26
6 St. Louis 46
                    7 12 M
favstats(~Time, data = CommuteStLouis)
 min Q1 median Q3 max mean sd n missing
 1 11.5 20 30 130 21.97 14.23 500
                                       0
favstats(~Time, data = CommuteAtlanta)
min Q1 median Q3 max mean sd n missing
  1 15
        25 40 181 29.11 20.72 500
                                     0
bwplot(~Time, xlim = c(0, 200), data = CommuteAtlanta) # to check for normality
bwplot(~Time, xlim = c(0, 200), data = CommuteStLouis) # to check for normality
```



<pre>confint(t.test(CommuteAtlanta\$Time, CommuteStLouis\$Time, conf.level = 0.9))</pre>
--

mean of x	mean of y	lower	upper	level
29.110	21.970	5.289	8.991	0.900

6.12 Test for a Difference in Means

Example 6.27

<pre>head(Smiles, 3)</pre>		Example6.27
Leniency Group 1 7 smile 2 3 smile 3 6 smile		
<pre>bwplot(Group ~ Leniency, data = Smil</pre>	<pre>es) # to check for normality</pre>	
smile neutral		
	Leniency	
<pre>t.test(Leniency ~ Group, alt = "less</pre>	", data = Smiles)	Example6.27b

6.13 Paired Difference in Means

Example 6.28


```
data: x and Wetsuits$NoWetsuit
t = 1.369, df = 21.97, p-value = 0.1849
alternative hypothesis: true difference in means is not equal to {\tt 0}
95 percent confidence interval:
-0.03993 0.19493
sample estimates:
mean of x mean of y
1.507 1.429
Example 6.29
                                                                                                  Example6.29
head(Wetsuits, 3)
 Wetsuit NoWetsuit Gender
                                  Туре
                                          Sex
               1.49
1 1.57
                      F
                               swimmer Female
2
     1.47
               1.37
                         F triathlete Female
3
     1.42
               1.35
                               swimmer Female
                         F
t.test(Wetsuits$Wetsuit, Wetsuits$NoWetsuit, paired = TRUE)
Paired t-test
data: x and Wetsuits$NoWetsuit
t = 12.32, df = 11, p-value = 8.885e-08
alternative hypothesis: true difference in means is not equal to {\tt 0}
95 percent confidence interval:
0.06365 0.09135
sample estimates:
mean of the differences
                 0.0775
dotPlot(Wetsuits$Wetsuit - Wetsuits$NoWetsuit, width = 0.01, cex = 0.3)
      3.0 ·
      2.5 -
                                                      •
                                                                            •
                    •
      2.0 .
   Count
      1.5
                                                      1.0 -
      0.5
                                                      •
                                                                            •
                    •
      0.0 -
```

0.08

х

0.10

Example 6.30

0.06

Welch Two Sample t-test

<pre>confint(t.test(Wetsuits\$Wetsuit, Wetsuits\$NoWetsuit, paired = TRUE))</pre>								
	mean of the differences lower 0.07750 0.06365 level 0.95000	upper 0.09135						
	<pre>confint(t.test(~(Wetsuit - NoWetsuit), data = Wetsuits) mean of x lower upper level</pre>)						
	0.07750 0.06365 0.09135 0.95000							

Example7.1

Chi-Squared Tests for Categorical Variables

Goodness of fit tests test how well a distribution fits some hypothesis.

7.1 Testing Goodness-of-Fit for a Single Categorical Variable

Example 7.1

tally(~Answer, format = "proportion", data = APMultipleChoice)

A B C D E 0.2125 0.2250 0.1975 0.1950 0.1700

Chi-square Statistic

The Chi-squared test statistic:

$$\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

There is one term in this sum for each cell in our data table, and

- observed = the tally in that cell (a count from our raw data)
- expected = the number we would "expect" if the percentages followed our null hypothesis exactly. (Note: the expected counts might not be whole numbers.)

Example 7.5

You could calculate the chi-square statistic manually but of course, R can automate this whole process for us if we provide the data table and the null hypothesis. Notice that to use chisq.test(), you must enter the data

Example7.5

head(APMultipleChoice) Answer В 1 2 В 3 D 4 А 5 E 6 D answer <- c(85, 90, 79, 78, 68) chisq.test(answer) Chi-squared test for given probabilities data: answer X-squared = 3.425, df = 4, p-value = 0.4894

like answer <- c(85, 90, 79, 78, 68). The default null hypothesis is that all the probabilities are equal.

Chi-square Distribution

Figure 7.2

```
chisq.sample <- do(1000) * chisq.test(tally(~resample(toupper(letters[1:5]), 400)))$statistic 
histogram(~X.squared, data = chisq.sample)
```

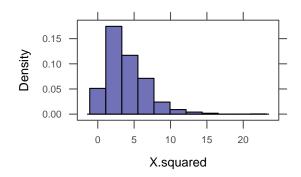
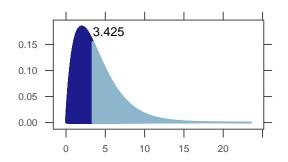


Figure 7.3

```
plotDist("chisq", params = list(df = 4), type = c("h", "1"), groups = x > 3.425, lty = 1)
ladd(grid.text("3.425", 3.425, 0.175, default.units = "native", hjust = 0))
```

Figure7.03



Our test statistic will be large when the observed counts and expected counts are quite different. It will be small when the observed counts and expected counts are quite close. So we will reject when the test statistic is large. To know how large is large enough, we need to know the sampling distribution.

If H_0 is true and the sample is large enough, then the sampling distribution for the Chi-squared test statistic will be approximately a Chi-squared distribution.

- The degrees of freedom for this type of goodness of fit test is one less than the number of cells.
- The approximation gets better and better as the sample size gets larger.

The mean of a Chi-squared distribution is equal to its degrees of freedom. This can help us get a rough idea about whether our test statistic is unusually large or not.

Example 7.6

- 1. H_0 : $p_w = 0.54$, $p_b = 0.18$, $p_h = 0.12$, $p_a = 0.15$, $p_o = 0.01$; H_a : At least one p_i is not as specified.
- 2. Observed count: *w* = 780, *b* = 117, *h* = 114, *a* = 384, *o* = 58
- 3. Chi-squared test:

```
jury <- c(780, 117, 114, 384, 58)
chisq.test(jury, p = c(0.54, 0.18, 0.12, 0.15, 0.01))
Chi-squared test for given probabilities
data: jury
X-squared = 357.4, df = 4, p-value < 2.2e-16
xchisq.test(jury, p = c(0.54, 0.18, 0.12, 0.15, 0.01)) # to list expected counts
Chi-squared test for given probabilities
data: jury
```

Example7.6

```
X-squared = 357.4, df = 4, p-value < 2.2e-16
780.00 117.00 114.00 384.00 58.00
(784.62) (261.54) (174.36) (217.95) ( 14.53)
[ 0.027] [ 79.880] [ 20.895] [126.509] [130.051]
<-0.16> <-8.94> <-4.57> <11.25> <11.40>
key:
observed
(expected)
[contribution to X-squared]
<residual>
```

Notice in this example, we need to tell R what the null hypothesis is.

How unusual is it to get a test statistic at least as large as ours? We compare to a Chi-squared distribution with 4 degrees of freedom. The mean value of such a statistic is 4, and our test statistic is much larger, so we anticipate that our value is extremely unusual.

Goodness-of-Fit for Two Categories

When there are only two categories, the Chi-squared goodeness of fit test is equivalent to the 1-proportion test. Notice that prop.test() uses the count in one category and total but that chisq.test() uses cell counts.

Example 7.8

```
Example7.8
prop.test(84, 200)
1-sample proportions test with continuity correction
data: x and n
X-squared = 4.805, df = 1, p-value = 0.02838
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.3513 0.4918
sample estimates:
  p
0.42
chisq.test(c(84, 116), p = c(0.5, 0.5))
Chi-squared test for given probabilities
data: c(84, 116)
X-squared = 5.12, df = 1, p-value = 0.02365
binom.test(84, 200)
Exact binomial test
```

Although all three tests test the same hypotheses and give similar p-values (in this example), the binomial test is generally used because

- The binomial test is exact for all sample sizes while the Chi-squared test and 1-proportion test are only approximate, and the approximation is poor when sample sizes are small.
- The binomial test and 1-proportion test also produce confidence intervals.

7.2 Testing for an Association Between Two Categorical Variables

Example 7.9

```
OneTrueLove <- read.file("OneTrueLove.csv")

tally("Response, format = "proportion", data = OneTrueLove)

Agree Disagree Don't know

0.28000 0.69029 0.02971

tally("Response + Gender, format = "proportion", margin = TRUE, data = OneTrueLove)

Gender

Response Female Male Total

Agree 0.13829 0.14171 0.28000

Disagree 0.38286 0.30743 0.69029

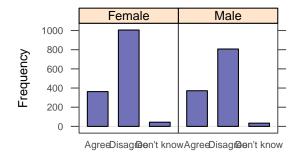
Don't know 0.01676 0.01295 0.02971

Total 0.53790 0.46210 1.00000
```

Figure 7.4

bargraph(~Response | Gender, type = "count", data = OneTrueLove)

Figure7.04



Chi-square Test for Association

Example 7.10

<pre>head(WaterTaste, 3)</pre>	Example7.10							
Gender Age Class UsuallyDrink FavBotWatBrand Preference First Second 1 F 18 F Filtered DEER PARK CABD Fiji SamsChoice Aqu 2 F 18 F Tap NONE CABD Fiji SamsChoice Aqu 3 F 18 F Tap DEER PARK CADB Fiji SamsChoice Fourth Sex 1 Tap Female 2 Tap Female 3 Aquafina Female								
<pre>water <- tally(~UsuallyDrink + First, data = WaterTaste) water</pre>								
First UsuallyDrink Aquafina Fiji SamsChoice Tap Bottled 14 15 8 4 Filtered 4 10 9 3 Tap 7 16 7 3								
<pre>water <- rbind(c(14, 15, 8, 4), c(11, 26, 16, 6)) # to combine Tap and Filtered water</pre>								
[,1] [,2] [,3] [,4] [1,] 14 15 8 4 [2,] 11 26 16 6								
<pre>colnames(water) <- c("Aquafina", "Fiji", "SamsChoice", "Tap") # add column names rownames(water) <- c("Bottled", "Tap/Filtered") # add row names water</pre>								

Aquafina Fiji SamsChoice Tap

Bottled	14	15	8	4	
Tap/Filtered	11		16	6	
xchisq.test(water))				Example7.10c
Pearson's Chi-squa	ared t	test			
<pre>data: water X-squared = 3.243, 14.00 15.00 (10.25) (16.81) [1.3720] [0.1949] < 1.171> <-0.441></pre>	8.0 (9.8 [0.34)0 4 34) (4 141] [0.	.00 .10) 0024]	3557	
11.00 26.00 (14.75) (24.19) [0.9534] [0.1354] <-0.976> < 0.368>	(14.	16) (5 391] [0.	0017]		
key: observed (expected) [contribution to) <residual></residual>	(-squa	ared]			

Special Case for a 2 x 2 Table

There is also an exact test that works only in the case of a 2×2 table (much like the binomial test can be used instead of a goodness of fit test if there are only two categories). The test is called **Fisher's Exact Test**.

In this case we see that the simulated p-value from the Chi-squared Test is nearly the same as the exact p-value from Fisher's Exact Test. This is because Fisher's test is using mathematical formulas to compute probabilities of *all* randomizations – it is essentially the same as doing infinitely many randomizations!

Note: For a 2×2 table, we could also use the method of 2-proportions (prop.test(), manual resampling, or formula-based). The approximations based on the normal distribution will be poor in the same situations where the Chi-squared test gives a poor approximation.

Example 7.11

```
SplitStealTable <- rbind(c(187, 195), c(116, 76))
SplitStealTable
       [,1] [,2]
[1,] 187 195
[2,] 116 76
colnames(SplitStealTable) <- c("Split", "Steal")</pre>
```

Example7.11

157

Example7.11b

```
rownames(SplitStealTable) <- c("Younger", "Older")</pre>
SplitStealTable
        Split Steal
Younger
         187
               195
01der 116
                 76
fisher.test(SplitStealTable)
Fisher's Exact Test for Count Data
data: SplitStealTable
p-value = 0.01023
alternative hypothesis: true odds ratio is not equal to 1 \\
95 percent confidence interval:
0.4346 0.9066
sample estimates:
odds ratio
    0.6288
xchisq.test(SplitStealTable)
Pearson's Chi-squared test with Yates' continuity correction
data: SplitStealTable
X-squared = 6.286, df = 1, p-value = 0.01217
 187.00 195.00
(201.65) (180.35)
[1.06] [1.19]
<-1.03> < 1.09>
116.00
         76.00
(101.35) (90.65)
[2.12] [2.37]
< 1.46> <-1.54>
key:
observed
(expected)
[contribution to X-squared]
<residual>
To use the test for proportions as done in Example 6.23,
SplitStealData <- rbind(</pre>
```

```
do(187) * data.frame( agegroup = "Under40", decision="Split"),
do(195) * data.frame( agegroup = "Under40", decision="Steal"),
do(116) * data.frame( agegroup = "Over40", decision="Split"),
do(76) * data.frame( agegroup = "Over40", decision="Steal"))
```

Example7.11c

Example7.11d

```
prop.test(decision ~ agegroup, data = SplitStealData)
```

 $\ensuremath{\text{2-sample}}$ test for equality of proportions with continuity correction

```
data: t(table_from_formula)
X-squared = 6.286, df = 1, p-value = 0.01217
alternative hypothesis: two.sided
95 percent confidence interval:
-0.2040 -0.0253
sample estimates:
prop 1 prop 2
0.4895 0.6042
```

ANOVA to Compare Means

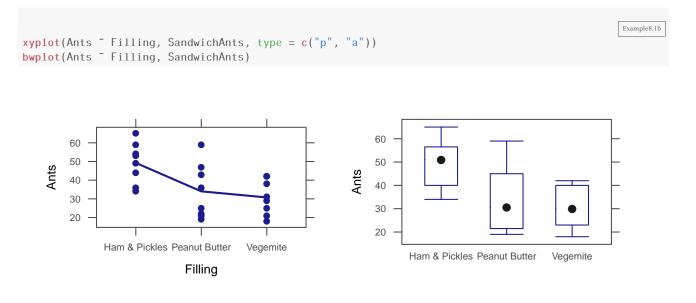
8.1 Analysis of Variance

- Two variables: categorical explanatory and quantitative response
 - Can be used in either experimental or observational designs.
- Main Question: Does the population mean response depend on the (treatment) group?
 - H_0 : the population group means are all the equal $(\mu_1 = \mu_2 = \cdots \mu_k)$
 - H_a : the population group means are not all equal
- If categorical variable has only 2 values, we already have a method: 2-sample *t*-test
 - ANOVA allows for 3 or more groups (sub-populations)
- *F* statistic compares within group variation (how different are individuals in the same group?) to between group variation (how different are the different group means?)
- ANOVA assumes that each group is normally distributed with the same (population) standard deviation.
 - Check normality with normal quantile plots (of residuals)
 - Check equal standard deviation using 2:1 ratio rule (largest standard deviation at most twice the smallest standard deviation).

Null and Alternative Hypotheses

Example 8.1

Example8.1



Partitioning Variability

Example 8.3

```
Ants.Model <- lm(Ants ~ Filling, data = SandwichAnts)

anova(Ants.Model)

Analysis of Variance Table

Response: Ants

Df Sum Sq Mean Sq F value Pr(>F)

Filling 2 1561 780 5.63 0.011 *

Residuals 21 2913 139

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The p-value listed in this output is the p-value for our null hypothesis that the mean population response is the same in each treatment group. In this case we would reject the null hypothesis at the $\alpha = 0.05$ level.

In the next section we'll look at this test in more detail, but notice that if you know the assumptions of a test, the null hypothesis being tested, and the p-value, you can generally interpret the results even if you don't know all the details of how the test statistic is computed.

The F-Statistic

The ANOVA test statistic (called *F*) is based on three ingredients:

- 1. how different the group means are (between group differences)
- 2. the amount of variability within each group (within group differences)
- 3. sample size

Each of these will be involved in the calculation of *F*.

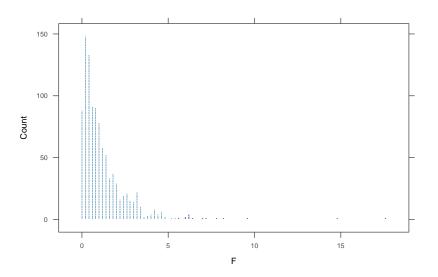
Figure 8.3

```
Rand.Ants <- do(1000) * anova(lm(Ants ~ shuffle(Filling), data = SandwichAnts))
tally(~(F >= 5.63), data = Rand.Ants)

TRUE FALSE <NA>
15 985 1000
prop(~(F >= 5.63), data = Rand.Ants)

TRUE
0.0075
```

dotPlot(~F, width = 0.2, groups = (F <= 5.63), data = Rand.Ants)</pre>



The F-distribution

Under certain conditions, the *F* statistic has a known distribution (called the *F* distribution). Those conditions are

- 1. The null hypothesis is true (i.e., each group has the same mean)
- 2. Each group is sampled from a normal population
- 3. Each population group has the same standard deviation

When these conditions are met, we can use the *F*-distribution to compute the p-value without generating the randomization distribution.

• *F* distributions have two parameters – the degrees of freedom for the numerator and for the denominator. In our example, this is 2 for the numerator and 7 for the denominator.

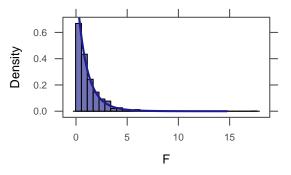
Figure8.3

©2014

- When H_0 is true, the numerator and denominator both have a mean of 1, so F will tend to be close to 1.
- When *H*⁰ is false, there is more difference between the groups, so the numerator tends to be larger. This means we will reject the null hypothesis when *F* gets large enough.
- The p-value is computed using pf().

Figure 8.4

```
histogram(~F, width = 4/7, center = 0.25, data = Rand.Ants)
plotDist("f", df1 = 2, df2 = 21, add = TRUE)
```



More Examples of ANOVA

Example 8.5

```
head(StudentSurvey, 3)
                                                                                                     Example8.5
       Year Gender Smoke
                            Award HigherSAT Exercise TV Height Weight Siblings BirthOrder
1
     Senior
                  М
                       No Olympic
                                        Math
                                                    10
                                                        1
                                                               71
                                                                     180
                                                                                 4
                                                                                            4
2 Sophomore
                  F
                      Yes Academy
                                        Math
                                                     4
                                                        7
                                                               66
                                                                     120
                                                                                 2
                                                                                            2
3 FirstYear
                                        Math
                                                    14
                                                        5
                                                               72
                                                                     208
                                                                                 2
                                                                                             1
                  М
                       No
                            Nobel
                          GPA Pulse Piercings
                                                    Sex
  VerbalSAT MathSAT
                      SAT
1
        540
                 670 1210 3.13
                                   54
                                               0
                                                   Male
2
        520
                 630 1150 2.50
                                   66
                                               3 Female
3
        550
                 560 1110 2.55
                                  130
                                               0
                                                   Male
favstats(~Pulse, data = StudentSurvey)
 min 01 median
                   Q3 max mean
                                         n missing
                                    sd
  35 62
            70 77.75 130 69.57 12.21 362
                                                  0
favstats(Pulse ~ Award, data = StudentSurvey)
```

Figure8.4

```
.group min Q1 median Q3 max mean sd n missing
1 Academy 42 64.5 71 76 95 70.52 12.36 31
                                                   0
2 Nobel 40 65.0
                    72 80 130 72.21 13.09 149
                                                   0
3 Olympic 35 60.0 68 74 96 67.25 10.97 182
                                                   0
anova(lm(Pulse ~ Award, StudentSurvey))
Analysis of Variance Table
Response: Pulse
         Df Sum Sq Mean Sq F value Pr(>F)
         2 2047
Award
                    1024
                             7.1 0.00094 ***
Residuals 359 51729
                       144
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figure 8.5

bwplot(Award ~ Pulse, data = StudentSurvey)

Olympic Nobel Academy 40 60 80 100 120 Pulse

ANOVA Calculations

• Between group variability: *G* = groupMean – grandMean

This measures how different a group is from the overall average.

• Within group variability: *E* = response – groupMean

This measures how different and individual is from its group average. *E* stands for "error", but just as in "standard error" it is not a "mistake". It is simply measure how different an individual response is from the model prediction (in this case, the group mean).

The individual values of *E* are called **residuals**.

Example 8.6

Let's first compute the grand mean and group means.

Figure8.5

SandwichAnts

	_	_	_							
	Butter	8	Bread							
1	no	Vegemite	Rye	18	10					
2	no	Peanut Butter	Rye	43	26					
3	no	Ham & Pickles	Rye	44	39					
4	no	Vegemite	Wholemeal	29	25					
5	no	Peanut Butter	Wholemeal	59	35					
6	no	Ham & Pickles	Wholemeal	34	1					
7	no	Vegemite	Multigrain	42	44					
8	no	Peanut Butter	Multigrain	22	36					
9	no	Ham & Pickles	Multigrain	36	32					
10	no	Vegemite	White	42	33					
11	no	Peanut Butter	White	25	34					
12	no	Ham & Pickles	White	49	13					
13	no	Vegemite	Rye	31	14					
14	no	Peanut Butter	Rye	36	31					
15	no	Ham & Pickles	Rye	54	20					
16	no	Vegemite	Wholemeal	21	19					
17	no	Peanut Butter	Wholemeal	47	38					
18	no	Ham & Pickles	Wholemeal	65	5					
19	no	Vegemite	Multigrain	38	21					
20	no	Peanut Butter	Multigrain	19	22					
21	no	Ham & Pickles	Multigrain	59	8					
22	no	Vegemite	White	25	41					
23	no	Peanut Butter	White	21	16					
24	no	Ham & Pickles	White	53	23					
mea	<pre>mean(Ants, data = SandwichAnts) # grand mean</pre>									

mean(Ants, data = SandwichAnts) # grand mean

[1] 38

4

5

6

no

mean(Ants ~ Filling, data = SandwichAnts) # group means

Vegemite Wholemeal 29

Ham	&	Pickles	Peanut	Butter	Vegemite
		49.25		34.00	30.75

And add those to our data frame

```
Example8.6b
SA <- transform(SandwichAnts, groupMean = c(30.75, 34, 49.25, 30.75, 34, 49.25, 30.75, 34,
   49.25, 30.75, 34, 49.25, 30.75, 34, 49.25, 30.75, 34, 49.25, 30.75, 34, 49.25, 30.75, 34,
   49.25))
SA <- transform(SA, grandMean = rep(38, 24))</pre>
SA
   Butter
               Filling
                            Bread Ants Order groupMean grandMean
                               Rye 18
                                                  30.75
1
      no
               Vegemite
                                         10
                                                               38
2
                                   43
                                           26
                                                  34.00
                                                               38
       no Peanut Butter
                               Rye
3
       no Ham & Pickles
                               Rye 44
                                           39
                                                  49.25
                                                               38
```

30.75

34.00

49.25

38

38

38

25

1

35

59

no Peanut Butter Wholemeal

no Ham & Pickles Wholemeal 34

7	no Vegemite Multigrain	42	44	30.75	38
8	no Peanut Butter Multigrain	22	36	34.00	38
9	no Ham & Pickles Multigrain	36	32	49.25	38
10	no Vegemite White	42	33	30.75	38
11	no Peanut Butter White	25	34	34.00	38
12	no Ham & Pickles White	49	13	49.25	38
13	no Vegemite Rye	31	14	30.75	38
14	no Peanut Butter Rye	36	31	34.00	38
15	no Ham & Pickles Rye	54	20	49.25	38
16	no Vegemite Wholemeal	21	19	30.75	38
17	no Peanut Butter Wholemeal	47	38	34.00	38
18	no Ham & Pickles Wholemeal	65	5	49.25	38
19	no Vegemite Multigrain	38	21	30.75	38
20	no Peanut Butter Multigrain	19	22	34.00	38
21	no Ham & Pickles Multigrain	59	8	49.25	38
22	no Vegemite White	25	41	30.75	38
23	no Peanut Butter White	21	16	34.00	38
24	no Ham & Pickles White	53	23	49.25	38

SA <- transform(SA, M = groupMean - grandMean)
SA <- transform(SA, E = Ants - groupMean)
SA</pre>

	Dutton	E:11:na	Drood	Anto	Ondon	anounMoon	a no n dMo o n	м	г
	Butter	Filling				groupMean	0	M	E
1	no	Vegemite	Rye	18	10	30.75			-12.75
2		Peanut Butter	Rye	43	26	34.00		-4.00	9.00
3	no	Ham & Pickles	Rye	44	39	49.25	38	11.25	-5.25
4	no	Vegemite	Wholemeal	29	25	30.75	38	-7.25	-1.75
5	no	Peanut Butter	Wholemeal	59	35	34.00	38	-4.00	25.00
6	no	Ham & Pickles	Wholemeal	34	1	49.25	38	11.25	-15.25
7	no	Vegemite	Multigrain	42	44	30.75	38	-7.25	11.25
8	no	Peanut Butter	Multigrain	22	36	34.00	38	-4.00	-12.00
9	no	Ham & Pickles	Multigrain	36	32	49.25	38	11.25	-13.25
10	no	Vegemite	White	42	33	30.75	38	-7.25	11.25
11	no	Peanut Butter	White	25	34	34.00	38	-4.00	-9.00
12	no	Ham & Pickles	White	49	13	49.25	38	11.25	-0.25
13	no	Vegemite	Rye	31	14	30.75	38	-7.25	0.25
14	no	Peanut Butter	Rye	36	31	34.00	38	-4.00	2.00
15	no	Ham & Pickles	Rye	54	20	49.25	38	11.25	4.75
16	no	Vegemite	Wholemeal	21	19	30.75	38	-7.25	-9.75
17	no	Peanut Butter	Wholemeal	47	38	34.00	38	-4.00	13.00
18	no	Ham & Pickles	Wholemeal	65	5	49.25	38	11.25	15.75
19	no	Vegemite	Multigrain	38	21	30.75	38	-7.25	7.25
20	no	Peanut Butter	0	19	22	34.00	38	-4.00	-15.00
21			0	59	8	49.25	38	11.25	9.75
22		Vegemite	White	25	41	30.75		-7.25	-5.75
23		Peanut Butter		21	16	34.00			-13.00
23		Ham & Pickles	White	53	23	49.25		11.25	3.75
24	110	Hall & FICKIES	wiitte	55	20	49.20	30	11.20	5.75

As we did with variance, we will square these differences:

```
SA <- transform(SA, M2 = (groupMean - grandMean)^2)
SA <- transform(SA, E2 = (Ants - groupMean)^2)
SA</pre>
```

Example8.6c

	Butter	Filling	Bread	Ants	0rder	groupMean		М		M2
1	no	Vegemite	Rye	18	10	30.75	38	-7.25	-12.75	52.56
2		Peanut Butter	Rye	43	26	34.00		-4.00		16.00
3		Ham & Pickles	Rye	44	39	49.25		11.25		126.56
4	no	Vegemite	Wholemeal	29	25	30.75		-7.25		52.56
5		Peanut Butter	Wholemeal	59	35	34.00		-4.00		16.00
6		Ham & Pickles	Wholemeal	34	1	49.25			-15.25	
7	no		Multigrain	42	44	30.75		-7.25	11.25	52.56
8		Peanut Butter	0	22	36	34.00			-12.00	16.00
9		Ham & Pickles		36	32	49.25			-13.25	
10	no	Vegemite	White	42	33	30.75		-7.25	11.25	52.56
11		Peanut Butter	White	25	34	34.00		-4.00	-9.00	16.00
12		Ham & Pickles	White	49	13	49.25		11.25		126.56
13	no	Vegemite	Rye	31	14	30.75		-7.25	0.25	52.56
14		Peanut Butter Ham & Pickles	Rye	36	31	34.00		-4.00	2.00	16.00
15		Vegemite	Rye	54 21	20	49.25		11.25		126.56 52.56
16	no	Peanut Butter	Wholemeal		19	30.75		-7.25		
17 18		Ham & Pickles	Wholemeal Wholemeal	47 65	38	34.00 49.25		-4.00 11.25		16.00 126.56
19			Multigrain	38	5 21	49.25		-7.25	7.25	52.56
20	no	Peanut Butter		19	22	34.00			-15.00	16.00
21		Ham & Pickles	-	59	8	49.25		11.25		126.56
22		Vegemite	White	25	41	30.75		-7.25		52.56
23		Peanut Butter	White	21	16	34.00			-13.00	16.00
24		Ham & Pickles	White	53	23	49.25		11.25		126.56
2.		2	mittee	00	20	10.20	00	11.20	0.10	120.00
1	162.562									
2	81.000									
3	27.562									
4	3.062									
5	625.000									
6	232.562	25								
7	126.562	25								
8	144.000	00								
9	175.562	25								
10	126.562	25								
11	81.000	00								
12	0.062	25								
13	0.062	25								
14	4.000	00								
15	22.562	25								
16	95.062	25								
17	169.000	00								
18	248.062	25								
19	52.562									
	225.000									
21	95.062									
22	33.062									
24	14.062	25								

And then add them up (SS stands for "sum of squares")

```
SST <- sum(~((Ants - grandMean)^2), data = SA)
SST
[1] 4474</pre>
```

168

Example8.6e

```
SSM <- sum(~M2, data = SA)
SSM # also called SSG
[1] 1561
SSE <- sum(~E2, data = SA)
SSE
[1] 2913</pre>
```

8.2 Pairwise Comparisons and Inference After ANOVA

Using ANOVA for Inferences about Group Means

We can construct a confidence interval for any of the means by just taking a subset of the data and using t.test(), but there are some problems with this approach. Most importantly,

We were primarily interested in comparing the means across the groups. Often people will display confidence intervals for each group and look for "overlapping" intervals. But this is not the best way to look for differences.

Nevertheless, you will sometimes see graphs showing multiple confidence intervals and labeling them to indicate which means appear to be different from which. (See the solution to problem 15.3 for an example.)

Example 8.7

```
anova(Ants.Model)
Analysis of Variance Table
Response: Ants
     Df Sum Sq Mean Sq F value Pr(>F)
Filling 2 1561 780 5.63 0.011 *
Residuals 21 2913
                     139
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MSE <- 138.7
mean(Ants ~ Filling, data = SandwichAnts)
Ham & Pickles Peanut Butter
                              Vegemite
             34.00
                                30.75
       49.25
mean <- 34
t.star <- qt(0.975, df = 21)
t.star
```

©2014

Example8.7

[1] 2.08

mean - t.star * (sqrt(MSE)/sqrt(8))

[1] 25.34

```
mean + t.star * (sqrt(MSE)/sqrt(8))
```

[1] 42.66

TukeyHSD(Ants.Model)

Tukey multiple comparisons of means 95% family-wise confidence level

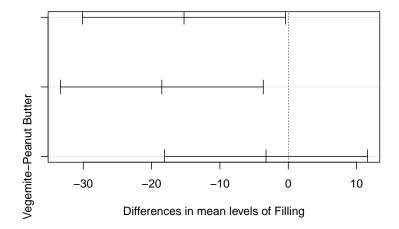
Fit: aov(formula = x)

\$Filling

	UIII	TMT	upr	p au j
Peanut Butter-Ham & Pickles	-15.25	-30.09	-0.4067	0.0433
Vegemite-Ham & Pickles	-18.50	-33.34	-3.6567	0.0131
Vegemite-Peanut Butter	-3.25	-18.09	11.5933	0.8466

```
plot(TukeyHSD(Ants.Model))
```

95% family-wise confidence level



Example 8.8

```
MSE <- 138.7
mean(Ants ~ Filling, data = SandwichAnts)</pre>
```

```
Ham & Pickles Peanut Butter

49.25 34.00 30.75

diff.mean <- (30.75 - 49.25)

t.star <- qt(0.975, df = 21)

t.star
```

[1] 2.08

diff.mean - t.star * (sqrt(MSE * (1/8 + 1/8)))

[1] -30.75

diff.mean + t.star * (sqrt(MSE * (1/8 + 1/8)))

[1] -6.254

Example 8.9

```
t <- diff.mean/sqrt(MSE * (1/8 + 1/8))
t
[1] -0.5519
pt(t, df = 21) * 2
[1] 0.5868</pre>
```

Lots of Pairwise Comparisons

Example 8.10

Example8.8b

Example8.9

Example8.9b

Example8.10

```
2 231
2 NaturalScience
3 NaturalScience
                    1 189
4 SocialScience
                    6
                       85
5 NaturalScience
                    1 113
6
     Humanities
                    9 132
Books.Model <- lm(Cost ~ Field, data = TextbookCosts)</pre>
anova(Books.Model)
Analysis of Variance Table
Response: Cost
          Df Sum Sq Mean Sq F value Pr(>F)
Field
           3 30848
                     10283
                              4.05 0.014 *
Residuals 36 91294
                      2536
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(Books.Model)
Call:
lm(formula = Cost ~ Field, data = TextbookCosts)
Residuals:
           1Q Median
  Min
                        3Q
                               Max
-77.60 -35.30 -4.95 36.90 102.70
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       94.6
                                 15.9
                                         5.94 8.3e-07 ***
                       25.7
                                  22.5
                                          1.14 0.2613
FieldHumanities
FieldNaturalScience
                                   22.5
                                                0.0017 **
                       76.2
                                          3.38
FieldSocialScience
                       23.7
                                   22.5
                                          1.05
                                                0.2996
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 50.4 on 36 degrees of freedom
Multiple R-squared: 0.253, Adjusted R-squared: 0.19
F-statistic: 4.05 on 3 and 36 DF, p-value: 0.014
```

TukeyHSD(Books.Model)

```
Tukey multiple comparisons of means 95% family-wise confidence level
```

Fit: aov(formula = x)

head(TextbookCosts)

Field Books Cost

1 SocialScience 3 77

Example8.10b

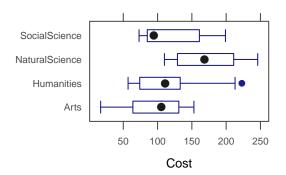
ANOVA to Compare Means

\$Fi	eld				
		diff	lwr	upr	p adj
Hum	nanities-Arts	25.7	-34.95	86.354	0.6669
Nat	uralScience-Arts	76.2	15.55	136.854	0.0090
Soc	ialScience-Arts	23.7	-36.95	84.354	0.7201
Nat	uralScience-Humanities	50.5	-10.15	111.154	0.1312
Soc	ialScience-Humanities	-2.0	-62.65	58.654	0.9997
Soc	ialScience-NaturalScience	-52.5	-113.15	8.154	0.1098

Figure 8.8

bwplot(Field ~ Cost, data = TextbookCosts)

Figure8.8



Inference for Regression

9.1 Inference for Slope and Correlation

Simple Linear Model

$$Y = \beta_0 + \beta_1 x + \epsilon$$
 where $\epsilon \sim \text{Norm}(0, \sigma)$.

In other words:

• The mean response for a given predictor value *x* is given by a linear formula

mean response = $\beta_0 + \beta_1 x$

- The distribution of all responses for a given predictor value *x* is normal.
- The standard deviation of the responses is the same for each predictor value.

One of the goals in simple linear regression is to estimate this linear relationship – that is to estimate the intercept and the slope.

Of course, there are lots of lines. We want to determine the line that fits the data best. But what does that mean?

The usual method is called the **method of least squares** and chooses the line that has the *smallest possible sum of squares of residuals,* where residuals are defined by

residual = observed response – predicted response

For a line with equation $y = b_0 + b_1 x$, this would be

$$e_i = y_i - (b_0 + b_1 x)$$

Simple calculus (that you don't need to know) allows us to compute the best b_0 and b_1 possible. These best values define the least squares regression line. Fortunately, statistical software packages do all this work for us. In R, the command that does this is lm().

Example 9.1

You can get terser output with

```
coef(lm(Price ~ PPM, data = InkjetPrinters))
(Intercept) PPM
   -94.22 90.88
```

You can also get more information with

```
summary(lm(Price ~ PPM, data = InkjetPrinters))
Call:
lm(formula = Price ~ PPM, data = InkjetPrinters)
Residuals:
  Min
         10 Median
                      30
                             Max
-79.38 -51.40 -3.49 43.85 87.76
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -94.2 56.4 -1.67 0.11209
PPM
               90.9
                        19.5 4.66 0.00019 ***
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 58.5 on 18 degrees of freedom
Multiple R-squared: 0.547, Adjusted R-squared: 0.522
F-statistic: 21.7 on 1 and 18 DF, \, p-value: 0.000193 \,
```

So our regression equation is

Price = −94.2218 + 90.8781 · PPM

For example, this suggests that the average price for inkjet printers that print 3 pages per minute is

 $\widehat{\text{Price}} = -94.2218 + 90.8781 \cdot 3.0 = 178.4124$

Last Modified: September 4, 2014

Example9.1

©2014

Example9.1b

Example9.1c

Inference for Slope

Figure 9.1

xyplot(Price ~ PPM, data = InkjetPrinters, type = c("p", "r"))

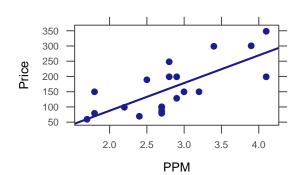
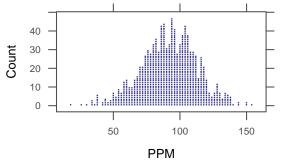


Figure 9.2

Boot.Ink <- do(1000) * lm(Price ~ PPM, data = resample(InkjetPrinters))</pre> Figure9.2 favstats(~PPM, data = Boot.Ink) Q1 median Q3 max mean min sd n missing $18.7 \ 78.48 \ 92.51 \ 106.1 \ 154.6 \ 91.81 \ 20.75 \ 1000$ 0 dotPlot(~PPM, width = 2, data = Boot.Ink) Rand.Ink <- do(1000) * lm(Price ~ shuffle(PPM), data = InkjetPrinters)</pre> favstats(~PPM, data = Rand.Ink) min Q1 median Q3 max mean sd n missing -83.53 -19.82 0.2183 18.93 80.83 -0.01323 28.7 1000 0 dotPlot(~PPM, width = 2, data = Rand.Ink)



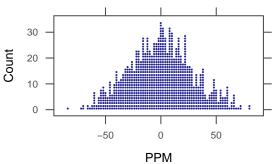


Figure9.1

Example9.2

Example 9.2

```
summary(lm(Price ~ PPM, data = InkjetPrinters))
Call:
lm(formula = Price ~ PPM, data = InkjetPrinters)
Residuals:
  Min 10 Median
                    3Q
                             Max
-79.38 -51.40 -3.49 43.85 87.76
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -94.2 56.4 -1.67 0.11209
PPM
               90.9
                         19.5 4.66 0.00019 ***
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 58.5 on 18 degrees of freedom
Multiple R-squared: 0.547, Adjusted R-squared: 0.522
F-statistic: 21.7 on 1 and 18 DF, p-value: 0.000193
confint(lm(Price ~ PPM, data = InkjetPrinters), "PPM")
   2.5 % 97.5 %
PPM 49.94 131.8
```

Example 9.3

head(RestaurantTips)

	Bill	Tip	Credit	Guests	Day	Server	PctTip	CreditCard		
1	23.70	10.00	n	2	Fri	А	42.2	No		
2	36.11	7.00	n	3	Fri	В	19.4	No		
3	31.99	5.01	У	2	Fri	A	15.7	Yes		
4	17.39	3.61	У	2	Fri	В	20.8	Yes		
5	15.41	3.00	n	2	Fri	В	19.5	No		
6	18.62	2.50	n	2	Fri	А	13.4	No		
<pre>summary(lm(Tip ~ Bill, data = RestaurantTips))</pre>										
Call:										
lm(formula = Tip ~ Bill, data = RestaurantTips)										
Residuals: Min 10 Median 30 Max -2.391 -0.489 -0.111 0.284 5.974										

Coefficients:

Example9.3

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.29227 0.16616 -1.76 0.081.

Bill 0.18221 0.00645 28.25 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.98 on 155 degrees of freedom

Multiple R-squared: 0.837,Adjusted R-squared: 0.836

F-statistic: 798 on 1 and 155 DF, p-value: <2e-16

confint(lm(Tip ~ Bill, data = RestaurantTips), "Bill", level = 0.9)

5 % 95 %

Bill 0.1715 0.1929
```

Example 9.4

- 1. $H_0: \beta_1 = 0; H_a: \beta_1 \neq 0$
- 2. Test statistic: $b_1 = 0.0488$ (sample slope)
- 3. t-test for slope:

```
summary(lm(PctTip ~ Bill, data = RestaurantTips))
Call:
lm(formula = PctTip ~ Bill, data = RestaurantTips)
Residuals:
 Min 10 Median 30
                           Max
-8.993 -2.310 -0.646 1.468 25.533
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.5096 0.7396 21.0 <2e-16 ***
Bill
         0.0488
                      0.0287 1.7 0.091.
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.36 on 155 degrees of freedom
Multiple R-squared: 0.0183, Adjusted R-squared: 0.012
F-statistic: 2.89 on 1 and 155 DF, p-value: 0.0911
```

t-Test for Correlation

Example 9.5

summary(lm(CostBW ~ PPM, data = InkjetPrinters))

Example9.5

Example9.4

Call: lm(formula = CostBW ~ PPM, data = InkjetPrinters) Residuals: Min 10 Median 30 Max -2.138 -0.729 -0.337 0.532 3.807 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.683 1.284 6.76 2.5e-06 *** PPM 0.444 -3.50 0.0026 ** -1.552 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.33 on 18 degrees of freedom Multiple R-squared: 0.405, Adjusted R-squared: 0.372 F-statistic: 12.2 on 1 and 18 DF, p-value: 0.00257

Example 9.6

summary(lm(PctTip ~ Bill, data = RestaurantTips)) Call: lm(formula = PctTip ~ Bill, data = RestaurantTips) Residuals: Min 10 Median 3Q Max -8.993 -2.310 -0.646 1.468 25.533 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 15.5096 0.7396 21.0 <2e-16 *** Bill 0.0287 1.7 0.091 . 0.0488 _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.36 on 155 degrees of freedom Multiple R-squared: 0.0183, Adjusted R-squared: 0.012 $F\text{-statistic:}\ 2.89$ on 1 and 155 DF, $\ p\text{-value:}\ 0.0911$

Coefficient of Determination: R-squared

Example 9.7

summary(lm(Price ~ PPM, data = InkjetPrinters))

Call: lm(formula = Price ~ PPM, data = InkjetPrinters)

©2014

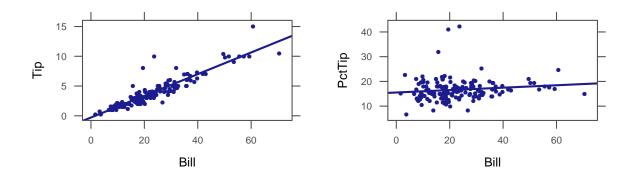
Example9.6

Residuals: Min 10 Median 30 Max -79.38 -51.40 -3.49 43.85 87.76 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -94.2 56.4 -1.67 0.11209 PPM 90.9 19.5 4.66 0.00019 *** _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 58.5 on 18 degrees of freedom Multiple R-squared: 0.547, Adjusted R-squared: 0.522 F-statistic: 21.7 on 1 and 18 DF, p-value: 0.000193

Checking Conditions for a Simple Linear Model

Example 9.9

xyplot(Tip ~ Bill, data = RestaurantTips, type = c("p", "r"), cex = 0.5)
xyplot(PctTip ~ Bill, data = RestaurantTips, type = c("p", "r"), cex = 0.5)



9.2 ANOVA for Regression

Partitioning Variability

We can also think about regression as a way to analyze the variability in the response. This is a lot like the ANOVA tables we have seen before. This time:

$$SST = \sum (y - \overline{y})^2$$
$$SSE = \sum (y - \hat{y})^2$$
$$SSM = \sum (\hat{y} - \overline{y})^2$$
$$SST = SSM + SSE$$

Example9.10

As before, when *SSM* is large and *SSE* is small, then the model $(\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x)$ explains a lot of the variability and little is left unexplained (*SSE*). On the other hand, if *SSM* is small and *SSE* is large, then the model explains only a little of the variability and most of it is due to things not explained by the model.

Example 9.10

```
summary(lm(Calories ~ Sugars, Cereal))
Call:
lm(formula = Calories ~ Sugars, data = Cereal)
Residuals:
          10 Median
  Min
                        30
                              Max
-36.57 -25.28 -2.55 17.80 51.81
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 88.920 10.812 8.22 6.0e-09 ***
              4.310
                        0.927
                                  4.65 7.2e-05 ***
Sugars
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 26.6 on 28 degrees of freedom
Multiple R-squared: 0.436, Adjusted R-squared: 0.416
F-statistic: 21.6 on 1 and 28 DF, p-value: 7.22e-05
anova(lm(Calories ~ Sugars, Cereal))
Analysis of Variance Table
Response: Calories
         Df Sum Sq Mean Sq F value Pr(>F)
Sugars
         1 15317 15317
                             21.6 7.2e-05 ***
Residuals 28 19834
                       708
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

F-Statistic

- MSM = SSM/DFM = SSM/(number of groups 1)
- *MSE* = *SSE*/*DFE* = *SSE*/(*n* number of groups)

MS stands for "mean square"

Our test statistic is

$$F = \frac{MSM}{MSE}$$

Example 9.11

SSM <- 15317 MSM <- SSM/(2 - 1) MSM [1] 15317 SSE <- 19834 MSE <- SSE/(30 - 2) MSE [1] 708.4

F <- MSM/MSE F [1] 21.62

pf(F, 1, 28, lower.tail = FALSE)

[1] 7.217e-05

Example 9.12

©2014

```
summary(lm(Calories ~ Sodium, Cereal))
Call:
lm(formula = Calories ~ Sodium, data = Cereal)
Residuals:
         10 Median
  Min
                      3Q
                            Max
-47.39 -22.92 -8.01 18.75 76.23
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 103.759 18.868 5.50 7.1e-06 ***
Sodium
                       0.081 1.69 0.1
             0.137
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 33.8 on 28 degrees of freedom
Multiple R-squared: 0.0922, Adjusted R-squared: 0.0598
F\text{-statistic:}\ 2.84 on 1 and 28 DF, \ p\text{-value:}\ 0.103
anova(lm(Calories ~ Sodium, Cereal))
```

Example9.11

Example9.11b

Example9.12

Example9.13

Example9.13b

```
Analysis of Variance Table
Response: Calories
Df Sum Sq Mean Sq F value Pr(>F)
Sodium 1 3241 3241 2.84 0.1
Residuals 28 31909 1140
```

The percentage of explained variability is denoted r^2 or R^2 :

$$R^2 = \frac{SSM}{SST} = \frac{SSM}{SSM + SSE}$$

Example 9.13

The summary of the linear model shows us the coefficient of determination but we can also find it manually.

```
SSM <- 15317
SST <- SSM + 19834
R2 <- SSM/SST
R2
[1] 0.4357
rsquared(lm(Calories ~ Sugars, data = Cereal))
[1] 0.4357
SSM <- 3241
SST <- SSM + 31909
R2 <- SSM/SST
R2
[1] 0.0922
rsquared(lm(Calories ~ Sodium, data = Cereal))
[1] 0.0922</pre>
```

Computational Details

Example 9.15

Again, the summary of the linear model gives us the standard deviation of the error but we can calculate it manually.

[1] 33.76

Example 9.16

```
favstats(~Sodium, data = Cereal)
min Q1 median Q3 max mean sd n missing
5 183.8 217 251.2 408 220.2 77.41 30 0
SE <- SD/(77.4 * sqrt(30 - 1)) # SD from Example 9.15
SE</pre>
```

[1] 0.08099

9.3 Confidence and Prediction Intervals

Interpreting Confidence and Prediction Intervals

It may be very interesting to make predictions when the explanatory variable has some other value, however. There are two ways to do this in R. One uses the predict() function. It is simpler, however, to use the makeFun() function in the mosaic package, so that's the approach we will use here.

Prediction intervals

- 1. are much wider than confidence intervals
- 2. are very sensitive to the assumption that the population normal for each value of the predictor.
- 3. are (for a 95% confidence level) a little bit wider than

 $\hat{y}\pm 2SE$

where SE is the "residual standard error" reported in the summary output.

The prediction interval is a little wider because it takes into account the uncertainty in our estimated slope and intercept as well as the variability of responses around the true regression line.

Example 9.18

First, let's build our linear model and store it.

Example9.15

Example9.16

Example9.18

```
ink.model <- lm(Price ~ PPM, data = InkjetPrinters)</pre>
summary(ink.model)
Call:
lm(formula = Price ~ PPM, data = InkjetPrinters)
Residuals:
  Min
          10 Median
                      30
                              Max
-79.38 -51.40 -3.49 43.85 87.76
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -94.2 56.4 -1.67 0.11209
PPM
               90.9
                         19.5 4.66 0.00019 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 58.5 on 18 degrees of freedom
Multiple R-squared: 0.547, Adjusted R-squared: 0.522
F-statistic: 21.7 on 1 and 18 DF, p-value: 0.000193
```

Now let's create a function that will estimate values of Price for a given value of PPM:

Ink.Price <- makeFun(ink.model)</pre>

We can now input a PPM and see what our least squares regression line predicts for the price:

```
Ink.Price(PPM = 3) # estimate Price when PPM is 3.0
1
178.4
```

R can compute two kinds of confidence intervals for the response for a given value

1. A confidence interval for the *mean response* for a *given explanatory value* can be computed by adding interval='confidence'.

```
Ink.Price(PPM = 3, interval = "confidence")
    fit lwr upr
1 178.4 149.9 206.9
```

2. An interval for an *individual response* (called a prediction interval to avoid confusion with the confidence interval above) can be computed by adding interval='prediction' instead.

```
Ink.Price(PPM = 3, interval = "prediction")
    fit lwr upr
1 178.4 52.15 304.7
```

Example9.18b

Example9.18c

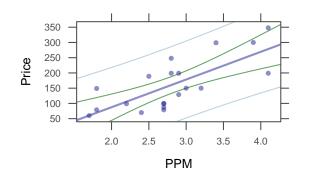
©2014

Example9.18d

Figure 9.13

The figure below shows the confidence (dotted) and prediction (dashed) intervals as bands around the regression line.

xyplot(Price ~ PPM, data = InkjetPrinters, panel = panel.lmbands, cex = 0.6, alpha = 0.5)



As the graph illustrates, the intervals are narrow near the center of the data and wider near the edges of the data. It is not safe to extrapolate beyond the data (without additional information), since there is no data to let us know whether the pattern of the data extends.

Figure9.13

10

Example10.1

Multiple Regression

10.1 Multiple Predictors

Multiple Regression Model

Example 10.1

Testing Individual Terms in a Model

Example 10.2

summary(lm(Price ~ PPM + CostBW, data = InkjetPrinters))
Example10.2
Call:
lm(formula = Price ~ PPM + CostBW, data = InkjetPrinters)

Example10.3

Residuals: Min 10 Median 30 Max -80.91 -35.60 -6.98 38.91 82.73 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 89.20 95.74 0.93 0.365 PPM 58.10 22.79 2.55 0.021 * -21.13 9.34 -2.26 0.037 * CostBW _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 52.8 on 17 degrees of freedom Multiple R-squared: 0.652, Adjusted R-squared: 0.611 F-statistic: 15.9 on 2 and 17 DF, p-value: 0.000127

Example 10.3

summary(lm(Bodyfat ~ Weight + Height, data = BodyFat)) Call: lm(formula = Bodyfat ~ Weight + Height, data = BodyFat) Residuals: Min 1Q Median 3Q Max -12.770 -3.953 -0.536 4.047 13.283 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 71.4825 16.2009 4.41 2.7e-05 *** Weight 0.2316 0.0238 9.72 5.4e-16 *** Height -1.3357 0.2589 -5.16 1.3e-06 *** _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 5.75 on 97 degrees of freedom Multiple R-squared: 0.494, Adjusted R-squared: 0.484 F-statistic: 47.4 on 2 and 97 DF, p-value: 4.48e-15

Example 10.4

summary(lm(Bodyfat ~ Weight + Height + Abdomen, data = BodyFat))
Example10.4
Call:
lm(formula = Bodyfat ~ Weight + Height + Abdomen, data = BodyFat)
Residuals:
Min 10 Median 30 Max

-9.522 -2.997 0.038 2.893 9.286 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -56.1329 18.1372 -3.09 0.00258 ** Weight -0.1756 0.0472 -3.72 0.00033 *** Height 0.1018 0.2444 0.42 0.67775 Abdomen 1.0747 0.1158 9.28 5.3e-15 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.2 on 96 degrees of freedom Multiple R-squared: 0.733,Adjusted R-squared: 0.725 F-statistic: 88 on 3 and 96 DF, p-value: <2e-16

ANOVA for a Multiple Regression Model

Example 10.6

```
Mod0 <- lm(Price ~ 1, data = InkjetPrinters)</pre>
Mod1 <- lm(Price ~ PPM, data = InkjetPrinters)</pre>
Mod2 <- lm(Price ~ PPM + CostBW, data = InkjetPrinters)</pre>
anova(Mod0, Mod1)
Analysis of Variance Table
Model 1: Price ~ 1
Model 2: Price ~ PPM
Res.Df RSS Df Sum of Sq F Pr(>F)
1 19 136237
2
    18 61697 1 74540 21.8 0.00019 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(Mod0, Mod2)
Analysis of Variance Table
Model 1: Price ~ 1
Model 2: Price ~ PPM + CostBW
Res.Df RSS Df Sum of Sq F Pr(>F)
1 19 136237
2
    17 47427 2 88809 15.9 0.00013 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Example 10.7

Mod0 <- lm(Price ~ 1, data = InkjetPrinters)</pre>

Example10.6

```
Mod1 <- lm(Price ~ PhotoTime + CostColor, data = InkjetPrinters)</pre>
summary(Mod1)
Call:
lm(formula = Price ~ PhotoTime + CostColor, data = InkjetPrinters)
Residuals:
   Min
            10 Median
                          30
                                   Max
-128.76 -55.55 -1.61 53.63 109.25
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 371.892 66.892 5.56 3.5e-05 ***
PhotoTime
            0.104
                       0.366 0.28 0.7804
CostColor -18.732
                       5.282 -3.55 0.0025 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 67.9 on 17 degrees of freedom
Multiple R-squared: 0.426, Adjusted R-squared: 0.358
F-statistic: 6.3 \mbox{ on } 2 \mbox{ and } 17 \mbox{ DF}, \mbox{ p-value: } 0.00899
anova(Mod0, Mod1)
Analysis of Variance Table
Model 1: Price ~ 1
Model 2: Price ~ PhotoTime + CostColor
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 19 136237
    17 78264 2 57973 6.3 0.009 **
2
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Example 10.8

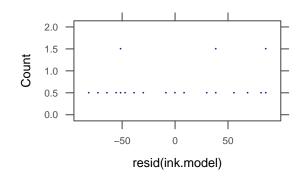
rsquared(lm(Price ~ PPM + CostBW, data = InkjetPrinters))
[1] 0.6519
rsquared(lm(Price ~ PhotoTime + CostColor, data = InkjetPrinters))
[1] 0.4255

10.2 Checking Conditions for a Regression Model

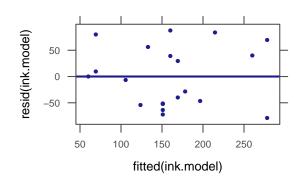
Histogram/Dotplot/Boxplot of Residuals

Example 10.12

```
ink.model <- lm(Price ~ PPM, data = InkjetPrinters)
dotPlot(~resid(ink.model), cex = 0.05, nint = 40)</pre>
```



xyplot(resid(ink.model) ~ fitted(ink.model), type = c("p", "r"), cex = 0.5)



Checking Conditions for a Multiple Regression Model

Example 10.13

```
body.model <- lm(Bodyfat ~ Weight + Abdomen, data = BodyFat)
summary(body.model)</pre>
```

Example10.13

©2014

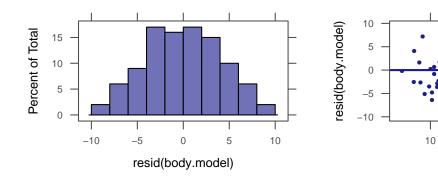
Example10.12

Example10.12b

```
lm(formula = Bodyfat ~ Weight + Abdomen, data = BodyFat)
Residuals:
   Min
           10 Median
                         30
                               Max
-9.595 -2.978 -0.018 2.897 9.192
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -48.7785
                         4.1810 -11.67 < 2e-16 ***
Weight
             -0.1608
                         0.0310
                                  -5.19 1.2e-06 ***
Abdomen
              1.0441
                         0.0892
                                  11.71 < 2e-16 ***
----
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.18 on 97 degrees of freedom
Multiple R-squared: 0.733, Adjusted R-squared: 0.727
```

F-statistic: 133 on 2 and 97 DF, p-value: <2e-16

```
histogram(~resid(body.model), breaks = 10)
xyplot(resid(body.model) ~ fitted(body.model), type = c("p", "r"), cex = 0.5)
```



10.3 Using Multiple Regression

Choosing a Model

Example 10.14

```
summary(lm(Bodyfat ~ Weight + Height + Abdomen + Age + Wrist, data = BodyFat))
Example10.14
Call:
lm(formula = Bodyfat ~ Weight + Height + Abdomen + Age + Wrist,
data = BodyFat)
Residuals:
Min  10 Median  30 Max
-10.732 -2.479 -0.207 2.767 9.634
```

20

fitted(body.model)

30

40

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -24.9416 20.7741 -1.20 0.2329 Weight -0.0843 0.0589 -1.43 0.1555 Height 0.0518 0.2385 0.22 0.8286 Abdomen 0.9676 0.1304 7.42 5.1e-11 *** 0.0774 0.0487 1.59 0.1152 Age 0.0058 ** Wrist -2.0580 0.7289 -2.82 _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.07 on 94 degrees of freedom Multiple R-squared: 0.754, Adjusted R-squared: 0.741 F-statistic: 57.7 on 5 and 94 DF, p-value: <2e-16 summary(lm(Bodyfat ~ Weight + Abdomen + Age + Wrist, data = BodyFat)) Call: lm(formula = Bodyfat ~ Weight + Abdomen + Age + Wrist, data = BodyFat) Residuals: 10 Median Min 3Q Max -10.780 -2.443 -0.268 2.829 9.590 Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) -21.0611 10.5281 -2.00 0.0483 * Weight -0.0761 0.0447 -1.70 0.0923 . Abdomen 0.9507 0.1040 9.14 1.1e-14 *** Age 0.0785 0.0482 1.63 0.1062 Wrist -2.0690 0.7235 -2.86 0.0052 ** _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.05 on 95 degrees of freedom Multiple R-squared: 0.754, Adjusted R-squared: 0.744 F-statistic: 72.8 on 4 and 95 DF, p-value: <2e-16

Example 10.15

summary(lm(Bodyfat ~ Weight + Abdomen + Wrist, data = BodyFat))
Example10.15
Call:
lm(formula = Bodyfat ~ Weight + Abdomen + Wrist, data = BodyFat)
Residuals:
 Min 10 Median 30 Max
-10.067 -3.118 -0.241 2.427 9.361
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -28.7531 9.4938 -3.03 0.00316 **

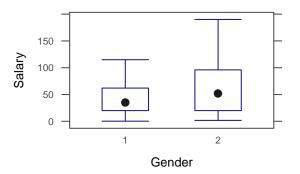
```
Weight -0.1236 0.0343 -3.61 0.00049 ***
Abdomen 1.0449 0.0872 11.98 < 2e-16 ***
Wrist -1.4659 0.6272 -2.34 0.02151 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.09 on 96 degrees of freedom
Multiple R-squared: 0.747,Adjusted R-squared: 0.739
F-statistic: 94.6 on 3 and 96 DF, p-value: <2e-16</pre>
```

Categorical Variables

Figure 10.9

bwplot(Salary ~ Gender, horizontal = FALSE, data = SalaryGender)

Figure10.9



Example 10.16

```
summary(lm(Salary ~ Gender, data = SalaryGender))
Call:
lm(formula = Salary ~ Gender, data = SalaryGender)
Residuals:
          10 Median
  Min
                        30
                              Max
-61.72 -30.13 -9.02 25.58 126.58
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
               41.6
                           5.8 7.18 1.3e-10 ***
Gender
               21.8
                           8.2
                                  2.66 0.0092 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 41 on 98 degrees of freedom
```

Example10.16

Multiple R-squared: 0.0672, Adjusted R-squared: 0.0577 F-statistic: 7.06 on 1 and 98 DF, p-value: 0.00918

Example 10.17

```
summary(lm(Salary ~ PhD, data = SalaryGender))
Call:
lm(formula = Salary ~ PhD, data = SalaryGender)
Residuals:
        10 Median 30
  Min
                             Max
-66.51 -24.49 -5.79 14.17 108.29
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.86 4.52 7.50 3e-11 ***
                         7.23 6.61
                                      2e-09 ***
PhD
             47.85
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 35.3 on 98 degrees of freedom
Multiple R-squared: 0.309, Adjusted R-squared: 0.302
F-statistic: 43.8 on 1 and 98 DF, p-value: 1.98e-09
confint(lm(Salary ~ PhD, data = SalaryGender))
           2.5 % 97.5 %
(Intercept) 24.90 42.83
PhD 33.49 62.21
```

Accounting for Confounding Variables

```
Example 10.18
```

summary(lm(Salary ~ Gender + PhD + Age, data = SalaryGender))
Call:
lm(formula = Salary ~ Gender + PhD + Age, data = SalaryGender)
Residuals:
 Min 10 Median 30 Max
 -81.3 -18.9 -0.8 14.7 93.5
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.955 10.836 -0.64 0.52253

Example10.17

Example10.18

Example10.19

 Gender
 11.094
 6.707
 1.65
 0.10136

 PhD
 36.431
 7.253
 5.02
 2.4e-06

 Age
 0.847
 0.232
 3.65
 0.00042

 -- Signif. codes:
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error:
 32.8 on 96 degrees of freedom

 Multiple R-squared:
 0.415,Adjusted R-squared:
 0.397

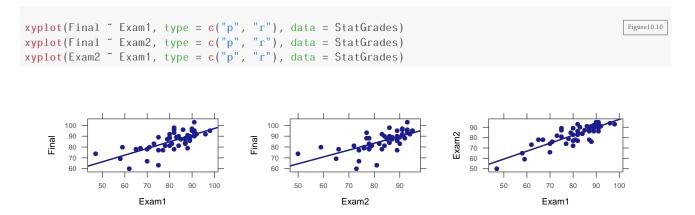
Association between Explanatory Variables

F-statistic: 22.7 on 3 and 96 DF, p-value: 3.31e-11

Example 10.19

summary(lm(Final ~ Exam1 + Exam2, data = StatGrades)) Call: lm(formula = Final ~ Exam1 + Exam2, data = StatGrades) Residuals: 3Q 10 Median Min Max -19.323 -2.550 0.613 2.963 11.443 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 30.895 7.997 3.86 0.00034 *** 2.78 0.00773 ** Exam1 0.447 0.161 Exam2 0.221 0.176 1.26 0.21509 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 6.38 on 47 degrees of freedom Multiple R-squared: 0.525, Adjusted R-squared: 0.505 F-statistic: 26 on 2 and 47 DF, p-value: 2.51e-08

Figure 10.10



©2014