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0
Introduction to R and Statistics

0.1 Getting Started With RStudio

Logging in and changing your password

You should change your password. Here’s how.

1. From the Tools menu, select Shell

2. Type yppasswd

3. You will be prompted for your old password, then your new password twice.

4. If you give a sufficiently strong new password (at least six letters, at least one capital, etc.) you will
receive notice that your password has been reset. If there was a problem, you will see a message about it
and can try again.

5. Once you have reset your password, click on Close to close the shell and get back to RStudio.

Loading packages

R is divided up into packages. A few of these are loaded every time you run R, but most have to be selected.
This way you only have as much of R as you need.

In the Packages tab, check the boxes next to the following packages to load them:

• Lock5withR (a package for our text book)

• mosaic (a package from Project MOSAIC, should autoload on the server)

• mosaicData (Project MOSAIC data sets)

Using R as a calculator

Notice that RStudio divides its world into four panels. Several of the panels are further subdivided into mul-
tiple tabs. The console panel is where we type commands that R will execute.

R can be used as a calculator. Try typing the following commands in the console panel.
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6 Introduction to R and Statistics

Figure 1: Welcome to RStudio.

arithmetic2

5 + 3

[1] 8

15.3 * 23.4

[1] 358

sqrt(16)

[1] 4

You can save values to named variables for later reuse

variables2

product = 15.3 * 23.4 # save result

product # show the result

[1] 358

product <- 15.3 * 23.4 # <- is assignment operator, same as =

product

[1] 358
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Introduction to R and Statistics 7

15.3 * 23.4 -> newproduct # -> assigns to the right

newproduct

[1] 358

.5 * product # half of the product

[1] 179

log(product) # (natural) log of the product

[1] 5.881

log10(product) # base 10 log of the product

[1] 2.554

log(product,base=2) # base 2 log of the product

[1] 8.484

The semi-colon can be used to place multiple commands on one line. One frequent use of this is to save and
print a value all in one go:

variables-semi2

15.3 * 23.4 -> product; product # save result and show it

[1] 358

0.2 Getting Help in RStudio

The RStudio help system

There are several ways to get RStudio to help you when you forget something. Most objects in packages have
help files that you can access by typing something like:

help-questionmark

?bargraph

?histogram

?HELPrct

You can search the help system using

help-GR

help.search("Grand Rapids") # Does R know anything about Grand Rapids?
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8 Introduction to R and Statistics

This can be useful if you don’t know the name of the function or data set you are looking for.

History

If you know you have done something before, but can’t remember how, you can search your history. The
history tab shows a list of recently executed commands. There is also a search bar to help you find things from
longer ago.

Error messages

When things go wrong, R tries to help you out by providing an error message. If you can’t make sense of
the message, you can try copying and pasting your command and the error message and sending to me in an
email. One common error message is illustrated below.

error-message

fred <- 23

frd

Error: object ’frd’ not found

The object frd is not found because it was mistyped. It should have been fred. If you see an “object not found”
message, check your typing and check to make sure that the necessary packages have been loaded.

0.3 Four Things to Know About R

Computers are great for doing complicated computations quickly, but you have to speak to them on their
terms. Here are few things that will help you communicate with R.

1. R is case-sensitive

If you mis-capitalize something in R it won’t do what you want.

2. Functions in R use the following syntax:

function-syntax
functionname(argument1, argument2, ...)

• The arguments are always surrounded by (round) parentheses and separated by commas.

Some functions (like data()) have no required arguments, but you still need the parentheses.

• If you type a function name without the parentheses, you will see the code for that function – which
probably isn’t what you want at this point.

3. TAB completion and arrows can improve typing speed and accuracy.

If you begin a command and hit the TAB key, R will show you a list of possible ways to complete the com-
mand. If you hit TAB after the opening parenthesis of a function, it will show you the list of arguments
it expects. The up and down arrows can be used to retrieve past commands.

4. If you get into some sort of mess typing (usually indicated by extra ’+’ signs along the left edge), you can
hit the escape key to get back to a clean prompt.
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Introduction to R and Statistics 9

0.4 Data in R

Data in Packages

Most often, data sets in R are stored in a structure called a data frame. There are a number of data sets built
into R and many more that come in various add on packages. The Lock5withR package, for example, contains
all the data sets from our text book. In the book, data set names are printed in bold text.

You can see a list of them using

datasets

data(package = "Lock5withR")

You can find a longer list of all data sets available in any loaded package using

data()

The HELPrct data set

The HELPrct data frame from the mosaic package contains data from the Health Evaluation and Linkage to
Primary Care randomized clinical trial. You can find out more about the study and the data in this data frame
by typing

HELPrcthelp

?HELPrct

Among other things, this will tell us something about the subjects in this study:

Eligible subjects were adults, who spoke Spanish or English, reported alcohol, heroin or cocaine
as their first or second drug of choice, resided in proximity to the primary care clinic to which
they would be referred or were homeless. Patients with established primary care relationships
they planned to continue, significant dementia, specific plans to leave the Boston area that would
prevent research participation, failure to provide contact information for tracking purposes, or
pregnancy were excluded.

Subjects were interviewed at baseline during their detoxification stay and follow-up interviews
were undertaken every 6 months for 2 years.

It is often handy to look at the first few rows of a data frame. It will show you the names of the variables and
the kind of data in them:

headHELP

head(HELPrct)

Error: object ’HELPrct’ not found

That’s plenty of variables to get us started with exploration of data.
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10 Introduction to R and Statistics

Using your own data

From Excel or Google to R

So far we have been using data that lives in R packages. This has allowed us to focus on things like how to
make plots and create numerical summaries without worrying too much about the data themselves. But if you
are going to do any of your own statistical analyses, then you will need to import your own data into R and
have some tools for manipulating the data once it is there.

Excel or Google spreadsheets are reasonable tools for entering (small) data sets by hand and doing basic data
tidying (organizing) and cleaning (correcting errors). This section describes how to get data from a spreadsheet
into R.

While you are still in the spreadsheet

If you are creating your own data in a spreadsheet with the intent of bringing into R (or some other statistical
package) for analysis, it is important that you design your spreadsheet appropriately. For most data sets this
will mean

1. The first row should contain variables names.

These should be names that will work well in R. This usually means they will be relatively short and
avoid spaces and punctuation.

2. Each additional row corresponds to a case/observational unit.

3. Each column corresponds to a variable.

4. There is nothing else in the spreadsheet.

Do not include notes to yourself, plots, numerical summaries, etc. These things can be kept in a separate
worksheet, another file, your lab notebook, just not in the worksheet you are going to export.

Exporting to csv

The comma separated values (csv) format has become a standard way of transferring data between programs.
Both Google and Excel can export to this format, and R can import from this format. Once your dataare ready
to go, export them to csv. Give the file a good name, and remember where you have put it.

Uploading the data (RStudio server only)

To get the data from your computer onto the server, you need to upload the data. (You can skip this step if you
are working with a local copy of RStudio.) Uploading transfers a copy of your data from your computer onto
the server (the “cloud”). This is like uploading pictures to Facebook so you can later use them in posts or as a
cover photo or tag your friends or whatever else once the photo is on Facebook.

To upload the data, go to the Files tab and click on Upload:
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Introduction to R and Statistics 11

A window will pop up prompting you to browse to the file’s location on your computer. Choose the file and it
will upload to the server. You should see it appear in your file menu.

Importing the data into R

Now that the file is on the server, you can import it into R. This takes place in the Environment tab. Once
there, choose Import Dataset and then From Text File....

The instructions are pretty clear from there, but here are some things to watch for:

• The default name for the data set is taken from the file name. If you used a very long file name, you will
probably want to shorten this down. (But don’t call it Data or something too generic either.) If the data
are from the asters you have been tagging, perhaps call it Asters. If you are working with multiple data
sets that deal with asters, add a bit more detail, perhaps Asters01 or some such thing.

• Be sure to select to use your first line as variable names (Heading = Yes).
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12 Introduction to R and Statistics

The data set should now be ready for use in R.

A shortcut for Google Spreadsheets

You can avoid all the uploading step if you use a Google spreadsheet and import directly from Google. To do
this, you must first publish your Google spreadsheet, and then copy the csv URL from Google. Here’s how.

1. In the file menu select Publish
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Introduction to R and Statistics 13

2. In the publish menu, select Start Publishing

3. Now choose the CSV file format.

4. Once you have done that, you can copy the URL:

5. In R, use the fectchGoogle() function to load the data into R:

# The URL will be really long and ugly...

Asters3 <- fetchGoogle(

"https://docs.google.com/spreadsheet/pub?key=0ApQwsmr3d8V2cmprN01YNnNqMEkxbHlNMHBQWmx0VkE&output=csv")

Don’t forget the quotation marks! (They won’t be part of what you copy from Google.)
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14 Introduction to R and Statistics

Using R commands to read a data file

Even if you primarily use the RStudio interface to import data, it is good to know about the command line
methods since these are required to import data into scripts, RMarkdown, and Rnw files. CSV files (and a few
other types of files as well) can be read with

someData <- read.file("file.csv")

This can be used to read data directly from a URL as well. For example, here is some data from the US Census
Bureau:

Population <- read.file(

"https://www.census.gov/popest/data/national/totals/2012/files/NST_EST2012_ALLDATA.csv",

as.is=TRUE # don't convert strings to factors

)

dim(Population)

[1] 57 46

head(Population, 4)

Sumlev Region Division State Name CENSUS2010POP ESTIMATESBASE2010

1 10 0 0 0 United States 308745538 308747508

2 20 1 0 0 Northeast Region 55317240 55317245

3 20 2 0 0 Midwest Region 66927001 66927489

4 20 3 0 0 South Region 114555744 114557147

POPESTIMATE2010 POPESTIMATE2011 POPESTIMATE2012 NPOPCHG_2010 NPOPCHG_2011 NPOPCHG_2012

1 309326225 311587816 313914040 578717 2261591 2326224

2 55376926 55597646 55761091 59681 220720 163445

3 66972135 67145089 67316297 44646 172954 171208

4 114853800 116022230 117257221 296653 1168430 1234991

BIRTHS2010 BIRTHS2011 BIRTHS2012 DEATHS2010 DEATHS2011 DEATHS2012 NATURALINC2010

1 987836 3977039 3953593 598716 2490976 2513173 389120

2 160353 644224 631961 108678 465661 466970 51675

3 210660 839312 825776 141184 580842 580718 69476

4 373379 1503557 1510568 235600 956673 970844 137779

NATURALINC2011 NATURALINC2012 INTERNATIONALMIG2010 INTERNATIONALMIG2011

1 1486063 1440420 189597 775528

2 178563 164991 48282 211281

3 258470 245058 24794 100624

4 546884 539724 71591 282102

INTERNATIONALMIG2012 DOMESTICMIG2010 DOMESTICMIG2011 DOMESTICMIG2012 NETMIG2010

1 885804 0 0 0 189597

2 221546 -38396 -161531 -220968 9886

3 111790 -49082 -184696 -185118 -24288

4 337769 86302 325546 353879 157893

NETMIG2011 NETMIG2012 RESIDUAL2010 RESIDUAL2011 RESIDUAL2012 Rbirth2011 Rbirth2012

1 775528 885804 0 0 0 12.81 12.64

2 49750 578 -1880 -7593 -2124 11.61 11.35

3 -84072 -73328 -542 -1444 -522 12.52 12.28

4 607648 691648 981 13898 3619 13.02 12.95

Rdeath2011 Rdeath2012 RNATURALINC2011 RNATURALINC2012 RINTERNATIONALMIG2011

1 8.024 8.036 4.787 4.606 2.498

2 8.392 8.387 3.218 2.963 3.808

3 8.662 8.638 3.854 3.645 1.501

4 8.287 8.323 4.737 4.627 2.444

RINTERNATIONALMIG2012 RDOMESTICMIG2011 RDOMESTICMIG2012 Rnetmig2011 Rnetmig2012
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Introduction to R and Statistics 15

1 2.832 0.000 0.000 2.4980 2.83230

2 3.979 -2.911 -3.969 0.8966 0.01038

3 1.663 -2.754 -2.753 -1.2537 -1.09069

4 2.896 2.820 3.034 5.2638 5.92978

Many web sites provide data in csv format. Here some examples:

• http://www.census.gov/ (Census Bureau data)

• http://www.ncdc.noaa.gov/data-access (NOAA Weather and climate data)

• http://www.gapminder.org/data/ (Gapminder data)

• http://introcs.cs.princeton.edu/java/data/ has a number of data sets, some in csv format, col-
lected from other places on the internet.

• http://www.exploredata.net/Downloads has data from WHO, a genome expression study, and a mi-
crobiome study.

But be aware that some of these files might need to be cleaned up a bit before they are usable for statistics. Also,
some internet files are very large and may take a while to download. Many sites will give an indication of the
size of the data set so you know what you are in for. The better sites will include links to a code book (a descrip-
tion of all the variables, units used, how and when the data were collected, and any other information relevant
to interpreting the data). Such a document is available for the population data loaded above. You can find it
at http://www.census.gov/popest/data/national/totals/2012/files/NST-EST2012-alldata.pdf

There are similar functions for reading various other sorts of data. There is even a read.xls() function in
the gdata package that can read directly from Excel spreadsheets without having to first export them to csv
format. There are also utilities for converting to and from native data formats of other statistical programs
(like SAS, SPSS, etc.). But since these typically all know how to read and write csv files, learning a workflow
that goes through CSV is a broadly applicable skill.

Missing Data

The na.strings argument can be used to specify codes for missing values. The following can be useful, for
example:

someData <- read.file('file.csv',

na.strings=c('NA','','.','-','na'))

because SAS uses a period (.) to code missing data, and some csv exporters use ‘-’. By default R reads these as
string data, which forces the entire variable to be of character type instead of numeric.

By default, R will recode character data as a factor. If you prefer to leave such variables in character format,
you can use

somData <- read.file('file.csv',

na.strings=c('NA','','.','-','na'),

stringsAsFactors=FALSE)

1

1 Even finer control can be obtained by manually setting the class (type) used for each column in the file. In addition, this speeds up
the reading of the file. For a csv file with four columns, we can declare them to be of class integer, numeric, character, and factor with the
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16 Introduction to R and Statistics

0.5 The Most Important Template

Most of what we will do in this chapter makes use of a single R template:

( ∼ , data = )

It is useful if we name the slots in this template:

goal ( y ∼ x , data = mydata )

Actually, there are some variations on this template:

### Simpler version -- for just one variable

goal(˜x, data = mydata)

### Fancier version:

goal(y ˜ x | z, data = mydata)

### Unified version:

goal(formula, data = mydata)

To use the template (we’ll call it the formula template because there is always a formula involved), you just
need to know what goes in each slot. This can be determined by asking yourself two questions:

1. What do you want R to do?

• this determines what function to use (goal).

2. What must R know to do that?

• this determines the inputs to the function

• for describing data, must must identify which data frame and which variable(s).

Let’s try an example. Suppose we want to make this plot

Loading required package: mosaicData
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following command.

someData <- read.file(’file.csv’, na.strings=c(’NA’,’’,’.’,’-’,’na’), colClasses=c(’integer’,’character’))
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1. What is our goal?

Our goal is to make a scatter plot. The function that does this is called xyplot(). That takes care of the
first slot.

2. What does R need to know to do this?
It needs to know what data set to use, and which varialbes to use on the x and y axes. These data are in
the Births78 data set in the mosaic package. Let’s take a quick look at the data:

births-head
require(mosaicData) # load the package that contains our data set

head(Births78)

date births dayofyear

1 1978-01-01 7701 1

2 1978-01-02 7527 2

3 1978-01-03 8825 3

4 1978-01-04 8859 4

5 1978-01-05 9043 5

6 1978-01-06 9208 6

We want the date on the x-axis and the number of births on the y axis, so the full command is

births-scatterplot
xyplot(births ˜ date, data = Births78)
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This same template can be used for a wide variety of graphical and numerical summaries. For example,
to compute the mean number of births, we can change xyplot() to mean() and provide births but not
date:

mean(˜births, data = Births78)

[1] 9132

Notice that when there is only one variable, it goes on the right side of the wiggle ().

We’ll see more examples of this template as we go along.

0.6 Manipulating your data

Creating a subset

The filter() command can be used to create subsets. The population data set we downloaded has population
for states and various other regions. If we just want the states, we can select the items where the State variable
is greater than 0. (Notice the double equals for testing equality.)
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18 Introduction to R and Statistics

filter

States <- filter(Population, State > 0)

dim(States)

[1] 52 46

That two states too many. We can scan the list to see what else is in there.

extra-states

States$name

NULL

The two extras are Washington, DC and Peurto Rico.

Choosing specific columns

filter() chooses rows from a data frame. select() selects columns. This can be handy if you have a data set
with many more variables than you are interested in. Let’s pick just a handful from the Population data set.

select

States2 <- select(States, Name, POPESTIMATE2010, POPESTIMATE2011, POPESTIMATE2012)

Dropping Variables

Sometimes it is easier to think about dropping variables. We can use select() for this as well:

iris2 <- select(iris, -Sepal.Width, -Sepal.Length) # the minus sign means drop

head(iris2, 3)

Petal.Length Petal.Width Species

1 1.4 0.2 setosa

2 1.4 0.2 setosa

3 1.3 0.2 setosa

Creating new variables

We can add a new variable to data set using mutate():

head(iris,3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa
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Introduction to R and Statistics 19

iris3 <- mutate(iris,

Sepal.Ratio = Sepal.Length / Sepal.Width,

Petal.Ratio = Petal.Length / Petal.Width )

head(iris3,3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species Sepal.Ratio Petal.Ratio

1 5.1 3.5 1.4 0.2 setosa 1.457 7.0

2 4.9 3.0 1.4 0.2 setosa 1.633 7.0

3 4.7 3.2 1.3 0.2 setosa 1.469 6.5

States3 <- mutate(States2,

Pop.Increase = 100 * (POPESTIMATE2012 - POPESTIMATE2010)/POPESTIMATE2010 )

histogram( ˜ Pop.Increase, data=States3, width=0.5,

main="% Population increase (2010 to 2012)" )

% Population increase (2010 to 2012)

Pop.Increase
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ty
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0.2

0.3

0.4

−2 0 2 4

Generally, it is a good idea to keep raw data (like Sepal.Length and Sepal.Width in your data file, but let
R do the computation of derived variables for you. Among other advantages, if you ever fix an error in a
Sepal.Length measurement, you don’t have to worry about remembering to also recompute the ratio. Futher-
more, your R code documents how the derived value was computed.

Saving Data

write.csv() can be used to save data from R into csv formatted files. This can be useful for exporting to some
other program.

writingData

write.csv(iris3, "iris3.csv")

Data can also be saved in native R format. Saving data sets (and other R objects) using save() has some
advantages over other file formats:

• Complete information about the objects is saved, including attributes.

• Data saved this way takes less space and loads much more quickly.

• Multiple objects can be saved to and loaded from a single file.

The downside is that these files are only readable in R.
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savingData

save(iris3, file = "iris3.rda") # the traditional file extension is rda for R native data.

load("iris3.rda") # loads previously saved data

For more on importing and exporting data, especially from other formats, see the R Data Import/Export manual
available on CRAN.

Merging datasets

The fusion1 data frame in the fastR package contains genotype information for a SNP (single nucleotide
polymorphism) in the gene TCF7L2. The pheno data frame contains phenotypes (including type 2 diabetes
case/control status) for an intersecting set of individuals. We can merge these together to explore the associa-
tion between genotypes and phenotypes using merge().

require(fastR)

head(fusion1, 3)

id marker markerID allele1 allele2 genotype Adose Cdose Gdose Tdose

1 9735 RS12255372 1 3 3 GG 0 0 2 0

2 10158 RS12255372 1 3 3 GG 0 0 2 0

3 9380 RS12255372 1 3 4 GT 0 0 1 1

head(pheno, 3)

id t2d bmi sex age smoker chol waist weight height whr sbp dbp

1 1002 case 32.86 F 70.76 former 4.57 112.0 85.6 161.4 0.9868 135 77

2 1009 case 27.39 F 53.92 never 7.32 93.5 77.4 168.1 0.9397 158 88

3 1012 control 30.47 M 53.86 former 5.02 104.0 94.6 176.2 0.9327 143 89

# merge fusion1 and pheno keeping only id's that are in both

fusion1m <- merge(fusion1, pheno, by.x = "id", by.y = "id", all.x = FALSE, all.y = FALSE)

head(fusion1m, 3)

id marker markerID allele1 allele2 genotype Adose Cdose Gdose Tdose t2d bmi

1 1002 RS12255372 1 3 3 GG 0 0 2 0 case 32.86

2 1009 RS12255372 1 3 3 GG 0 0 2 0 case 27.39

3 1012 RS12255372 1 3 3 GG 0 0 2 0 control 30.47

sex age smoker chol waist weight height whr sbp dbp

1 F 70.76 former 4.57 112.0 85.6 161.4 0.9868 135 77

2 F 53.92 never 7.32 93.5 77.4 168.1 0.9397 158 88

3 M 53.86 former 5.02 104.0 94.6 176.2 0.9327 143 89

In this case, since the values are the same for each data frame, we could collapse by.x and by.y to by and
collapse all.x and all.y to all. The first of these specifies which column(s) to use to identify matching cases.
The second indicates whether cases in one data frame that do not appear in the other should be kept (TRUE) or
dropped (filling in NA as needed) or dropped from the merged data frame.

Now we are ready to begin our analysis.

fusion1-xtabs

tally(˜t2d + genotype, fusion1m)
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genotype

t2d GG GT TT

case 737 375 48

control 835 309 27

0.7 Using R Markdown

Although you can export plots from RStudio for use in other applications, there is anotherway of preparing
documents that has many advantages. RStudio provides several ways to create documents that include text, R
code, R output, graphics, even mathematical notation all in one document. The simplest of these is R Mark-
down.

To create a new R Markdown document, go to “File”, “New”, then “R Markdown”:

When you do this, a file editing pane will open with a template inserted. If you click on “Knit HTML”, RStudio
will turn this into an HTML file and display it for you. Give it a try. You will be asked to name your file if you
haven’t already done so. If you are using the RStudio server in a browser, then your file will live on the server
(“in the cloud”) rather than on your computer.

If you look at the template file you will see that the file has two kinds of sections. Some of this file is just
normal text (with some extra symbols to make things bold, add in headings, etc.) You can get a list of all of
these mark up options by selecting the “Mardown Quick Reference” in the question mark menu.
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The second type of section is an R code chunk. These are colored differently to make them easier to see. You
can insert a new code chunk by selecting “Insert Chunk” from the “Chunks” menu:

(You can also type ```{r} to begin and ``` to end the code chunk if you would rather type.) You can put any
R code in these code chunks and the results (text output or graphics) as well as the R code will be displayed in
your HTML file.

There are options to do things like (a) run R code without displayng it, (b) run R code without displaying the
output, (c) controling size of plots, etc., etc. But for starting out, this is really all you need to know.

R Markdown files must be self-contained

R Markdown files do not have access to things you have done in your console. (This is good, else your document
would change based on things not in the file.) This means that you must explicitly load data, and require
packages in the R Markdown file in order to use them. In this class, this means that most of your R Markdown
files will have a chunk near the beginning that includes

require(mosaic) # load the mosaic package

require(Lock5withR) # get data sets from the book

Printing your document

The preview window has an icon that looks like an arrow pointing at a window. If you click on that the
document will open in a regular browser window. From there you can use your browser’s print features to
print the document.

0.8 Statistics: Answering Questions With Data

This is a course primarily about statistics, but what exactly is statistics? In other words, what is this course
about?2

Here are some definitions of statistics from other people:
2As we will see, the words statistic and statistics get used in more than one way. More on that later.

Last Modified: September 4, 2014 ©2014



Introduction to R and Statistics 23

• a collection of procedures and principles for gaining information in order to make decisions when faced
with uncertainty (J. Utts [?]),

• a way of taming uncertainty, of turning raw data into arguments that can resolve profound questions (T.
Amabile [?]),

• the science of drawing conclusions from data with the aid of the mathematics of probability (S. Garfunkel
[?]),

• the explanation of variation in the context of what remains unexplained (D. Kaplan [?]),

• the mathematics of the collection, organization, and interpretation of numerical data, especially the
analysis of a population’s characteristics by inference from sampling (American Heritage Dictionary [?]).

Here’s a simpler definition:

Statistics is the science of answering questions with data.

This definition gets at two important elements of the longer definitions above:

Data – the raw material

Data are the raw material for doing statistics. We will learn more about different types of data, how to collect
data, and how to summarize data as we go along.

Information – the goal

The goal of doing statistics is to gain some information or to make a decision – that is, to answer some question.

Statistics is useful because it helps us answer questions like the following: 3

• Which of two treatment plans leads to the best clinical outcomes?

• Are men or women more successful at quitting smoking? And does it matter which smoking cessation
program they use?

• Is my cereal company complying with regulations about the amount of cereal in its cereal boxes?

In this sense, statistics is a science – a method for obtaining new knowledge.Our simple definition is light on
describing the context in which this takes place. So let’s add two more important aspects of statistics.

Uncertainty – the context

The tricky thing about statistics is the uncertainty involved. If we measure one box of cereal, how do we know
that all the others are similarly filled? If every box of cereal were identical and every measurement perfectly
exact, then one measurement would suffice. But the boxes may differ from one another, and even if we measure
the same box multiple times, we may get different answers to the question How much cereal is in the box?

3The opening pages of each chapter of our book include many more questions.
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So we need to answer questions like How many boxes should we measure? and How many times should we
measure each box? Even so, there is no answer to these questions that will give us absolute certainty. So we
need to answer questions like How sure do we need to be?

Probability – the tool

In order to answer a question like How sure do we need to be?, we need some way of measuring our level of
certainty. This is where mathematics enters into statistics. Probability is the area of mathematics that deals
with reasoning about uncertainty.

0.9 A First Example: The Lady Tasting Tea

There is a famous story about a lady who claimed that tea with milk tasted different depending on whether
the milk was added to the tea or the tea added to the milk. The story is famous because of the setting in which
she made this claim. She was attending a party in Cambridge, England, in the 1920s. Also in attendance were
a number of university dons and their wives. The scientists in attendance scoffed at the woman and her claim.
What, after all, could be the difference?

All the scientists but one, that is. Rather than simply dismiss the woman’s claim, he proposed that they decide
how one should test the claim. The tenor of the conversation changed at this suggestion, and the scientists
began to discuss how the claim should be tested. Within a few minutes cups of tea with milk had been
prepared and presented to the woman for tasting.

Let’s take this simple example as a prototype for a statistical study. What steps are involved?

1. Determine the question of interest.

Just what is it we want to know? It may take some effort to make a vague idea precise. The precise ques-
tions may not exactly correspond to our vague questions, and the very exercise of stating the question
precisely may modify our question. Sometimes we cannot come up with any way to answer the question
we really want to answer, so we have to live with some other question that is not exactly what we wanted
but is something we can study and will (we hope) give us some information about our original question.

In our example this question seems fairly easy to state: Can the lady tell the difference between the two
tea preparations? But we need to refine this question. For example, are we asking if she always correctly
identifies cups of tea or merely if she does better than we could do ourselves (by guessing)?

2. Determine the population.

Just who or what do we want to know about? Are we only interested in this one woman or women in
general or only women who claim to be able to distinguish tea preparations?

3. Select measurements.

We are going to need some data. We get our data by making some measurements. These might be phys-
ical measurements with some device (like a ruler or a scale). But there are other sorts of measurements
too, like the answer to a question on a form. Sometimes it is tricky to figure out just what to measure.
(How do we measure happiness or intelligence, for example?) Just how we do our measuring will have
important consequences for the subsequent statistical analysis. The recorded values of these measure-
ments are called variables (because the values vary from one individual to another).

In our example, a measurement may consist of recording for a given cup of tea whether the woman’s
claim is correct or incorrect.

4. Determine the sample.

Usually we cannot measure every individual in our population; we have to select some to measure. But
how many and which ones? These are important questions that must be answered. Generally speaking,
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bigger is better, but it is also more expensive. Moreover, no size is large enough if the sample is selected
inappropriately.

Suppose we gave the lady one cup of tea. If she correctly identifies the mixing procedure, will we be
convinced of her claim? She might just be guessing; so we should probably have her taste more than one
cup. Will we be convinced if she correctly identifies 5 cups? 10 cups? 50 cups?

What if she makes a mistake? If we present her with 10 cups and she correctly identifies 9 of the 10,
what will we conclude? A success rate of 90% is, it seems, much better than just guessing, and anyone
can make a mistake now and then. But what if she correctly identifies 8 out of 10? 80 out of 100?

And how should we prepare the cups? Should we make 5 each way? Does it matter if we tell the woman
that there are 5 prepared each way? Should we flip a coin to decide even if that means we might end up
with 3 prepared one way and 7 the other way? Do any of these differences matter?

5. Make and record the measurements.

Once we have the design figured out, we have to do the legwork of data collection. This can be a time-
consuming and tedious process. In the case of the lady tasting tea, the scientists decided to present
her with ten cups of tea which were quickly prepared. A study of public opinion may require many
thousands of phone calls or personal interviews. In a laboratory setting, each measurement might be the
result of a carefully performed laboratory experiment.

6. Organize the data.

Once the data have been collected, it is often necessary or useful to organize them. Data are typically
stored in spreadsheets or in other formats that are convenient for processing with statistical packages.
Very large data sets are often stored in databases.

Part of the organization of the data may involve producing graphical and numerical summaries of the
data. These summaries may give us initial insights into our questions or help us detect errors that may
have occurred to this point.

7. Draw conclusions from data.

Once the data have been collected, organized, and analyzed, we need to reach a conclusion. Do we
believe the woman’s claim? Or do we think she is merely guessing? How sure are we that this conclusion
is correct?

Eventually we will learn a number of important and frequently used methods for drawing inferences
from data. More importantly, we will learn the basic framework used for such procedures so that it
should become easier and easier to learn new procedures as we become familiar with the framework.

8. Produce a report.

Typically the results of a statistical study are reported in some manner. This may be as a refereed article
in an academic journal, as an internal report to a company, or as a solution to a problem on a homework
assignment. These reports may themselves be further distilled into press releases, newspaper articles,
advertisements, and the like. The mark of a good report is that it provides the essential information
about each of the steps of the study.

As we go along, we will learn some of the standard terminology and procedures that you are likely to see
in basic statistical reports and will gain a framework for learning more.

At this point, you may be wondering who the innovative scientist was and what the results of the experiment
were. The scientist was R. A. Fisher, who first described this situation as a pedagogical example in his 1925
book on statistical methodology [?]. Fisher developed statistical methods that are among the most important
and widely used methods to this day, and most of his applications were biological.

0.10 Coins and Cups

You might also be curious about how the experiment came out. How many cups of tea were prepared? How
many did the woman correctly identify? What was the conclusion?
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Fisher never says. In his book he is interested in the method, not the particular results. But let’s suppose we
decide to test the lady with ten cups of tea. We’ll flip a coin to decide which way to prepare the cups. If we flip
a head, we will pour the milk in first; if tails, we put the tea in first. Then we present the ten cups to the lady
and have her state which ones she thinks were prepared each way.

It is easy to give her a score (9 out of 10, or 7 out of 10, or whatever it happens to be). It is trickier to figure out
what to do with her score. Even if she is just guessing and has no idea, she could get lucky and get quite a few
correct – maybe even all 10. But how likely is that?

Let’s try an experiment. I’ll flip 10 coins. You guess which are heads and which are tails, and we’ll see how
you do.

...

Comparing with your classmates, we will undoubtedly see that some of you did better and others worse.

Now let’s suppose the lady gets 9 out of 10 correct. That’s not perfect, but it is better than we would expect for
someone who was just guessing. On the other hand, it is not impossible to get 9 out of 10 just by guessing. So
here is Fisher’s great idea: Let’s figure out how hard it is to get 9 out of 10 by guessing. If it’s not so hard to do,
then perhaps that’s just what happened, so we won’t be too impressed with the lady’s tea tasting ability. On
the other hand, if it is really unusual to get 9 out of 10 correct by guessing, then we will have some evidence
that she must be able to tell something.

But how do we figure out how unusual it is to get 9 out of 10 just by guessing? We’ll learn another method
later, but for now, let’s just flip a bunch of coins and keep track. If the lady is just guessing, she might as well
be flipping a coin.

So here’s the plan. We’ll flip 10 coins. We’ll call the heads correct guesses and the tails incorrect guesses.
Then we’ll flip 10 more coins, and 10 more, and 10 more, and . . . . That would get pretty tedious. Fortunately,
computers are good at tedious things, so we’ll let the computer do the flipping for us using a tool in the mosaic
package. This package is already installed in our RStudio server. If you are running your own installation of R
you can install mosaic using the following command:

install-mosaic

install.packages("mosaic")

The rflip() function can flip one coin

flip1coin

require(mosaic)

rflip()

Flipping 1 coin [ Prob(Heads) = 0.5 ] ...

H

Number of Heads: 1 [Proportion Heads: 1]

or a number of coins

flip10coins

rflip(10)
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Flipping 10 coins [ Prob(Heads) = 0.5 ] ...

T T T H T T T T T T

Number of Heads: 1 [Proportion Heads: 0.1]

and show us the results.

Typing rflip(10) a bunch of times is almost as tedious as flipping all those coins. But it is not too hard to tell
R to do() this a bunch of times.

flip2

do(2) * rflip(10)

Loading required package: parallel

n heads tails prop

1 10 3 7 0.3

2 10 5 5 0.5

Let’s get R to do() it for us 10,000 times and make a table of the results.

flip4

results <- do(10000) * rflip(10)

table(results$heads)

0 1 2 3 4 5 6 7 8 9 10

5 89 416 1178 2045 2388 2146 1168 457 102 6

flip5

perctable(results$heads) # the table in percents

0 1 2 3 4 5 6 7 8 9 10

0.05 0.89 4.16 11.78 20.45 23.88 21.46 11.68 4.57 1.02 0.06

proptable(results$heads) # the table in proportions (i.e., decimals)

0 1 2 3 4 5 6 7 8 9 10

0.0005 0.0089 0.0416 0.1178 0.2045 0.2388 0.2146 0.1168 0.0457 0.0102 0.0006

We could also use tally() for this.

tally

tally(˜heads, data = results)

0 1 2 3 4 5 6 7 8 9 10

5 89 416 1178 2045 2388 2146 1168 457 102 6
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tally(˜heads, data = results, format = "percent")

0 1 2 3 4 5 6 7 8 9 10

0.05 0.89 4.16 11.78 20.45 23.88 21.46 11.68 4.57 1.02 0.06

tally(˜heads, data = results, format = "proportion")

0 1 2 3 4 5 6 7 8 9 10

0.0005 0.0089 0.0416 0.1178 0.2045 0.2388 0.2146 0.1168 0.0457 0.0102 0.0006

You might be surprised to see that the number of correct guesses is exactly 5 (half of the 10 tries) only 24% of
the time. But most of the results are quite close to 5 correct. 67% of the results are 4, 5, or 6, for example. And
1% of the results are between 3 and 7 (inclusive). But getting 8 correct is a bit unusual, and getting 9 or 10
correct is even more unusual.

So what do we conclude? It is possible that the lady could get 9 or 10 correct just by guessing, but it is not very
likely (it only happened in about 1.1% of our simulations). So one of two things must be true:

• The lady got unusually “lucky”, or

• The lady is not just guessing.

Although Fisher did not say how the experiment came out, others have reported that the lady correctly iden-
tified all 10 cups! [?]

This same reasoning can be applied to answer a wide range of questions that have a similar form. For example,
the question of whether dogs can smell cancer could be answered essentially the same way (although it would
be a bit more involved than preparing tea and presenting cups to the Lady).
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1
Collecting Data

1.1 The Structure of Data

Cases and Variables

Data sets in R are usually stored as data frames in a rectangular arrangement with rows corresponding to
observational units and columns corresponding to variables. A number of data sets are built into R and its
packages. The package for our text is Lock5withR which comes with a number of data sets.

require(Lock5withR) # Tell R to use the package for our text book

data(StudentSurvey) # load the StudentSurvey data set

Imagine data as a 2-dimensional structure (like a spreadsheet).

• Rows correspond to observational units (people, animals, plants, or other objects we are collect-
ing data about).

• Columns correspond to variables (measurements collected on each observational unit).

• At the intersection of a row and a column is the value of the variable for a particular observational
unit.

Observational units go by many names, depending on the kind of thing being studied. Popular names include
subjects, individuals, and cases. Whatever you call them, it is important that you always understand what
your observational units are.

Let’s take a look at the data frame for the Student Survey example in the text. If we type the name of the data
set, R will display it in its entirety for us. However, StudentSurvey is a larger data set, so it is more useful to
look at some sort of summary or subset of the data.

Table 1.1
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Table1.1head(StudentSurvey) # first six cases of the data set

Year Gender Smoke Award HigherSAT Exercise TV Height Weight Siblings BirthOrder

1 Senior M No Olympic Math 10 1 71 180 4 4

2 Sophomore F Yes Academy Math 4 7 66 120 2 2

3 FirstYear M No Nobel Math 14 5 72 208 2 1

4 Junior M No Nobel Math 3 1 63 110 1 1

5 Sophomore F No Nobel Verbal 3 3 65 150 1 1

6 Sophomore F No Nobel Verbal 5 4 65 114 2 2

VerbalSAT MathSAT SAT GPA Pulse Piercings Sex

1 540 670 1210 3.13 54 0 Male

2 520 630 1150 2.50 66 3 Female

3 550 560 1110 2.55 130 0 Male

4 490 630 1120 3.10 78 0 Male

5 720 450 1170 2.70 40 6 Female

6 600 550 1150 3.20 80 4 Female

We can easily classify variables as either categorical or quantitative by studying the result of head(), but
there are some summaries of the data set which reveal such information.

Data1.1

str(StudentSurvey) # structure of the data set

'data.frame': 362 obs. of 18 variables:

$ Year : Factor w/ 5 levels "","FirstYear",..: 4 5 2 3 5 5 2 5 3 2 ...

$ Gender : Factor w/ 2 levels "F","M": 2 1 2 2 1 1 1 2 1 1 ...

$ Smoke : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 1 1 1 1 ...

$ Award : Factor w/ 3 levels "Academy","Nobel",..: 3 1 2 2 2 2 3 3 2 2 ...

$ HigherSAT : Factor w/ 3 levels "","Math","Verbal": 2 2 2 2 3 3 2 2 3 2 ...

$ Exercise : num 10 4 14 3 3 5 10 13 3 12 ...

$ TV : int 1 7 5 1 3 4 10 8 6 1 ...

$ Height : int 71 66 72 63 65 65 66 74 61 60 ...

$ Weight : int 180 120 208 110 150 114 128 235 NA 115 ...

$ Siblings : int 4 2 2 1 1 2 1 1 2 7 ...

$ BirthOrder: int 4 2 1 1 1 2 1 1 2 8 ...

$ VerbalSAT : int 540 520 550 490 720 600 640 660 550 670 ...

$ MathSAT : int 670 630 560 630 450 550 680 710 550 700 ...

$ SAT : int 1210 1150 1110 1120 1170 1150 1320 1370 1100 1370 ...

$ GPA : num 3.13 2.5 2.55 3.1 2.7 3.2 2.77 3.3 2.8 3.7 ...

$ Pulse : int 54 66 130 78 40 80 94 77 60 94 ...

$ Piercings : int 0 3 0 0 6 4 8 0 7 2 ...

$ Sex : Factor w/ 2 levels "Female","Male": 2 1 2 2 1 1 1 2 1 1 ...

summary(StudentSurvey) # summary of each variable

Year Gender Smoke Award HigherSAT Exercise

: 2 F:169 No :319 Academy: 31 : 7 Min. : 0.00

FirstYear: 94 M:193 Yes: 43 Nobel :149 Math :205 1st Qu.: 5.00

Junior : 35 Olympic:182 Verbal:150 Median : 8.00

Senior : 36 Mean : 9.05

Sophomore:195 3rd Qu.:12.00

Max. :40.00

NA's :1

TV Height Weight Siblings BirthOrder VerbalSAT

Min. : 0.0 Min. :59.0 Min. : 95 Min. :0.00 Min. :1.00 Min. :390
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1st Qu.: 3.0 1st Qu.:65.0 1st Qu.:138 1st Qu.:1.00 1st Qu.:1.00 1st Qu.:550

Median : 5.0 Median :68.0 Median :155 Median :1.00 Median :2.00 Median :600

Mean : 6.5 Mean :68.4 Mean :160 Mean :1.73 Mean :1.83 Mean :594

3rd Qu.: 9.0 3rd Qu.:71.0 3rd Qu.:180 3rd Qu.:2.00 3rd Qu.:2.00 3rd Qu.:640

Max. :40.0 Max. :83.0 Max. :275 Max. :8.00 Max. :8.00 Max. :800

NA's :1 NA's :7 NA's :5 NA's :3

MathSAT SAT GPA Pulse Piercings Sex

Min. :400 Min. : 800 Min. :2.00 Min. : 35.0 Min. : 0.00 Female:169

1st Qu.:560 1st Qu.:1130 1st Qu.:2.90 1st Qu.: 62.0 1st Qu.: 0.00 Male :193

Median :610 Median :1200 Median :3.20 Median : 70.0 Median : 0.00

Mean :609 Mean :1204 Mean :3.16 Mean : 69.6 Mean : 1.67

3rd Qu.:650 3rd Qu.:1270 3rd Qu.:3.40 3rd Qu.: 77.8 3rd Qu.: 3.00

Max. :800 Max. :1550 Max. :4.00 Max. :130.0 Max. :10.00

NA's :17 NA's :1

Here are some more summaries:

Data1.1b

nrow(StudentSurvey) # number of rows

[1] 362

ncol(StudentSurvey) # number of columns

[1] 18

dim(StudentSurvey) # number of rows and columns

[1] 362 18

Many of the datasets in R have useful help files that describe the data and explain how they were collected or
give references to the original studies. You can access this information for the AllCountries data set by typing

Data1.1c

?StudentSurvey

We’ll learn how to make more customized summaries (numerical and graphical) soon. For now, it is only
important to observe how the organization of data in R reflects the observational units and variables in the
data set.

This is important if you want to construct your own data set (in Excel or a google spreadhseet, for example)
that you will later import into R. You want to be sure that the structure of your spread sheet uses rows and
columns in this same way, and that you don’t put any extra stuff into the spread sheet. It is a good idea to
include an extra row at the top which names the variables. Take a look at Chapter 0 to learn how to get the
data from Excel into R.

Categorical and Quantitative Variables

categorical variable a variable that places observational units into one of two or more categories (examples:
color, sex, case/control status, species, etc.)
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These can be further sub-divided into ordinal and nominal variables. If the categories have a natural
and meaningful order, we will call them ordered or ordinal variables. Otherwise, they are nominal
variables.

quantitative variable a variable that records measurements along some scale (examples: weight, height, age,
temperature) or counts something (examples: number of siblings, number of colonies of bacteria, etc.)

Quantitative variables can be continuous or discrete. Continuous variables can (in principle) take on any
real-number value in some range. Values of discrete variables are limited to some list and “in-between
values” are not possible. Counts are a good example of discrete variables.

Investigating Variables and Relationships between Variables

Data1.2head(AllCountries)

Country Code LandArea Population Energy Rural Military Health HIV Internet

1 Afghanistan AFG 652230 29.021 NA 76.0 4.4 3.7 NA 1.7

2 Albania ALB 27400 3.143 2088 53.3 NA 8.2 NA 23.9

3 Algeria ALG 2381740 34.373 37069 34.8 13.0 10.6 0.1 10.2

4 American Samoa ASA 200 0.066 NA 7.7 NA NA NA NA

5 Andorra AND 470 0.084 NA 11.1 NA 21.3 NA 70.5

6 Angola ANG 1246700 18.021 10972 43.3 NA 6.8 2.0 3.1

Developed BirthRate ElderlyPop LifeExpectancy CO2 GDP Cell Electricity

1 NA 46.5 2.2 43.9 0.02503 501.5 37.81 NA

2 1 14.6 9.3 76.6 1.31286 3678.2 141.93 1747.1

3 1 20.8 4.6 72.4 3.23296 4494.9 92.42 971.0

4 NA NA NA NA NA NA NA NA

5 NA 10.4 NA NA 6.52783 NA 77.18 NA

6 1 42.9 2.5 47.0 1.35109 4422.5 46.69 202.2

kwhPerCap

1 <NA>

2 Under 2500

3 Under 2500

4 <NA>

5 <NA>

6 Under 2500

summary(AllCountries)

Country Code LandArea Population Energy

Afghanistan : 1 : 3 Min. : 2 Min. : 0.0 Min. : 159

Albania : 1 AFG : 1 1st Qu.: 10830 1st Qu.: 0.8 1st Qu.: 5252

Algeria : 1 ALB : 1 Median : 94080 Median : 5.6 Median : 17478

American Samoa: 1 ALG : 1 Mean : 608120 Mean : 31.5 Mean : 86312

Andorra : 1 AND : 1 3rd Qu.: 446300 3rd Qu.: 20.6 3rd Qu.: 52486

Angola : 1 ANG : 1 Max. :16376870 Max. :1324.7 Max. :2283722

(Other) :207 (Other):205 NA's :1 NA's :77

Rural Military Health HIV Internet

Min. : 0.0 Min. : 0.00 Min. : 0.7 Min. : 0.10 Min. : 0.20

1st Qu.:22.9 1st Qu.: 3.80 1st Qu.: 8.0 1st Qu.: 0.10 1st Qu.: 5.65

Median :40.4 Median : 5.85 Median :11.3 Median : 0.40 Median :22.80

Mean :42.1 Mean : 8.28 Mean :11.2 Mean : 1.98 Mean :28.96

3rd Qu.:63.2 3rd Qu.:12.18 3rd Qu.:14.4 3rd Qu.: 1.30 3rd Qu.:48.15

Max. :89.6 Max. :29.30 Max. :26.1 Max. :25.90 Max. :90.50

NA's :115 NA's :26 NA's :68 NA's :14

Developed BirthRate ElderlyPop LifeExpectancy CO2
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Min. :1.00 Min. : 8.2 Min. : 1.00 Min. :43.9 Min. : 0.02

1st Qu.:1.00 1st Qu.:12.1 1st Qu.: 3.40 1st Qu.:62.8 1st Qu.: 0.62

Median :1.00 Median :19.4 Median : 5.40 Median :71.9 Median : 2.74

Mean :1.76 Mean :22.0 Mean : 7.47 Mean :68.9 Mean : 5.09

3rd Qu.:3.00 3rd Qu.:28.9 3rd Qu.:11.60 3rd Qu.:76.0 3rd Qu.: 7.02

Max. :3.00 Max. :53.5 Max. :21.40 Max. :82.8 Max. :49.05

NA's :78 NA's :16 NA's :22 NA's :17 NA's :15

GDP Cell Electricity kwhPerCap

Min. : 192 Min. : 1.24 Min. : 36 Under 2500 :73

1st Qu.: 1253 1st Qu.: 59.21 1st Qu.: 800 2500 - 5000:21

Median : 4409 Median : 93.70 Median : 2238 Over 5000 :41

Mean : 11298 Mean : 91.09 Mean : 4109 NA's :78

3rd Qu.: 12431 3rd Qu.:121.16 3rd Qu.: 5824

Max. :105438 Max. :206.43 Max. :51259

NA's :40 NA's :12 NA's :78

AllCountries[86, ]

Country Code LandArea Population Energy Rural Military Health HIV Internet Developed

86 Iceland ISL 100250 0.317 5255 7.7 0.1 13.1 0.3 90.5 3

BirthRate ElderlyPop LifeExpectancy CO2 GDP Cell Electricity kwhPerCap

86 15.2 11.7 81.3 7.024 39617 109.7 51259 Over 5000

Using Data to Answer a Question

response variable a variable we are trying to predict or explain

explanatory variable a variable used to predict or explain a response variable

1.2 Sampling from a Population

Samples from Populations

population the collection of animals, plants, objects, etc. that we want to know about

sample the (smaller) set of animals, plants, objects, etc. about which we have data

parameter a number that describes a population or model.

statistic a number that describes a sample.

Much of statistics centers around this question:

What can we learn about a population from a sample?

Sampling Bias

Often we are interested in knowing (approximately) the value of some parameter. A statistic used for this
purpose is called an estimate. For example, if you want to know the mean length of the tails of lemurs (that’s
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a parameter), you might take a sample of lemurs and measure their tails. The mean length of the tails of the
lemurs in your sample is a statistic. It is also an estimate, because we use it to estimate the parameter.

Statistical estimation methods attempt to

• reduce bias, and

• increase precision.

bias the systematic tendency of sample estimates to either overestimate or underestimate population param-
eters; that is, a systematic tendency to be off in a particular direction.

precision the measure of how close estimates are to the thing being estimated (called the estimand).

Simple Random Sample

Sampling is the process of selecting a sample. Statisticians use random samples

• to avoid (or at least reduce) bias, and

• so they can quantify sampling variability (the amount samples differ from each other), which in turn
allows us to quantify precision.

The simplest kind of random sample is called a simple random sample (aren’t statisticians clever about nam-
ing things?). A simple random sample is equivalent to putting all individuals in the population into a big hat,
mixing thoroughly, and selecting some out of the hat to be in the sample. In particular, in a simple random
sample, every individual has an equal chance to be in the sample, in fact, every subset of the population of a fixed
size has an equal chance to be in the sample.

Other sampling methods include

convenience sampling using whatever individuals are easy to obtain

This is usually a terrible idea. If the convenient members of the population differ from the inconvenient
members, then the sample will not be representative of the population.

volunteer sampling using people who volunteer to be in the sample

This is usually a terrible idea. Most likely the volunteers will differ in some ways from the non-volunteers,
so again the sample will not be representative of the population.

systematic sampling sampling done in some systematic way (every tenth unit, for example).

This can sometimes be a reasonable approach.

stratified sampling sampling separately in distinct sub-populations (called strata)

This is more complicated (and sometimes necessary) but fine as long as the sampling methods in each
stratum are good and the analysis takes the sampling method into account.

Example 1.15

Example1.15sample(AllCountries, 5)
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Country Code LandArea Population Energy Rural Military Health HIV Internet Developed

204 Uruguay URU 175020 3.334 4181 7.7 5.2 13.8 0.5 40.2 1

97 Jordan JOR 88240 5.812 7061 21.6 18.1 16.3 NA 27.4 1

143 Niger NIG 1266700 14.704 NA 83.5 NA 14.8 0.8 0.5 NA

121 Mali MLI 1220190 12.706 NA 67.8 14.7 11.1 1.0 1.6 NA

22 Bermuda BER 50 0.064 NA 0.0 NA NA NA 79.4 NA

BirthRate ElderlyPop LifeExpectancy CO2 GDP Cell Electricity kwhPerCap

204 14.6 13.7 76.0 2.49779 11995.8 132.19 2671 Under 2500

97 25.7 3.6 72.7 3.69488 4559.9 109.48 2112 Under 2500

143 53.5 2.0 51.4 0.05887 357.7 24.53 NA <NA>

121 42.6 2.3 48.4 0.04108 601.9 47.66 NA <NA>

22 12.5 NA 79.0 6.05455 NA 136.53 NA <NA>

orig.ids

204 204

97 97

143 143

121 121

22 22

1.3 Experiments and Observational Studies

Confounding Variables

Table 1.2

Table1.2head(LifeExpectancyVehicles, 10)

Year LifeExpectancy Vehicles

1 1970 70.8 108.4

2 1971 71.1 113.0

3 1972 71.2 118.8

4 1973 71.4 125.7

5 1974 72.0 129.9

6 1975 72.6 132.9

7 1976 72.9 138.5

8 1977 73.3 142.1

9 1978 73.5 148.4

10 1979 73.9 151.9

sub <- filter(LifeExpectancyVehicles, Year%%4 == 2)

sub

Year LifeExpectancy Vehicles

1 1970 70.8 108.4

2 1974 72.0 129.9

3 1978 73.5 148.4

4 1982 74.5 159.6

5 1986 74.7 175.7

6 1990 75.4 188.8

7 1994 75.7 198.0

8 1998 76.7 211.6

9 2002 77.3 229.6

10 2006 77.7 244.2
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Figure 1.2

Figure1.2xyplot(LifeExpectancy ˜ Vehicles, xlab = "Vehicles (millions)", ylab = "Life Expectancy",

data = LifeExpectancyVehicles)
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Observational Studies vs Experiments

Statisticians use the word experiment to mean something very specific. In an experiment, the researcher de-
termines the values of one or more (explanatory) variables, typically by random assignment. If there is no such
assignment by the researcher, the study is an observational study.
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2
Describing Data

In this chapter we discuss graphical and numerical summaries of data.

2.1 Categorical Variables

Let us investigate categorical variables in R by taking a look at the data set for the One True Love survey. Notice
that the data set is not readily available in our textbook’s package. However, the authors do provide us with
the necessary information to create our own data spreadsheet (in either Excel or Google) and import it into R.
(See Chapter 0 for instructions.)

Data2.1

OneTrueLove <- read.file("OneTrueLove.csv")

Alternatively, we can read from a URL like this

Data2.1b

OneTrueLove2 <- read.file("https://raw.githubusercontent.com/rpruim/Lock5withR/master/Book/OneTrueLove.csv")

One Categorical Variable

From the dataset we named as OneTrueLove, we can use the prop() function to quickly find proportions.

proportion

prop(˜Response, data = OneTrueLove)

Agree

0.28

Table 2.1

We can also tabulate the categorical variable to display the frequency by using the tally() function. The
default in tallying is to not include the row totals, or column totals when there are two variables. These are
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called marginal totals and if you want them, you can change the default.

Table2.1

tally(˜Response, margin = TRUE, data = OneTrueLove)

Agree Disagree Don't know Total

735 1812 78 2625

Example 2.3

To find the proportion of responders who disagree or don’t know, we can use the level= argument in the
function to find proportions.

Example2.3

prop(˜Response, level = "Disagree", data = OneTrueLove)

Disagree

0.6903

prop(˜Response, level = "Don't know", data = OneTrueLove)

Don't know

0.02971

Further, we can also display the relative frequencies, or proportions in a table.

Example2.3b

tally(˜Response, format = "proportion", margin = TRUE, data = OneTrueLove)

Agree Disagree Don't know Total

0.28000 0.69029 0.02971 1.00000

Figure 2.1

R provides many different chart and plot functions, including bar charts and pie charts, to visualize counts or
proportions. Bar charts, also known as bar graphs, are a way of displaying the distribution of a categorical
variable.

Figure2.1

bargraph(˜Response, data = OneTrueLove)

bargraph(˜Response, data = OneTrueLove, horizontal = TRUE)
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Two Categorical Variables: Two-Way Tables

Often, it is useful to compute cross tables for two (or more) variables. We can again use tally() for several
ways to investigate a two-way table.

Table 2.3

Table2.3tally(˜Response + Gender, data = OneTrueLove)

Gender

Response Female Male

Agree 363 372

Disagree 1005 807

Don't know 44 34

Table 2.4

Table2.4tally(˜Response + Gender, margins = TRUE, data = OneTrueLove)

Gender

Response Female Male Total

Agree 363 372 735

Disagree 1005 807 1812

Don't know 44 34 78

Total 1412 1213 2625

Example 2.5

Similar to one categorical variable, we can use the prop() function to find the proportion of two variables. The
first line results in the proportion of females who agree and the proportion of males who agree. The second
line shows the proportion who agree that are female and the proportion who disagree that are female. The
third results in the proportion of all the survey responders that are female.
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Example2.5

prop(Response ˜ Gender, data = OneTrueLove)

Agree.Female Agree.Male

0.2571 0.3067

prop(Gender ˜ Response, data = OneTrueLove)

Female.Agree Female.Disagree Female.Don't know

0.4939 0.5546 0.5641

prop(˜Gender, data = OneTrueLove)

Female

0.5379

See though that because we have multiple levels of each variable, this process can become quite tedious if we
want to find the proportions for all of the levels. Using the tally function a little differently will result in these
proportions.

Example2.5b

tally(Response ˜ Gender, data = OneTrueLove)

Gender

Response Female Male

Agree 0.25708 0.30668

Disagree 0.71176 0.66529

Don't know 0.03116 0.02803

tally(˜Response | Gender, data = OneTrueLove)

Gender

Response Female Male

Agree 0.25708 0.30668

Disagree 0.71176 0.66529

Don't know 0.03116 0.02803

tally(Gender ˜ Response, data = OneTrueLove)

Response

Gender Agree Disagree Don't know

Female 0.4939 0.5546 0.5641

Male 0.5061 0.4454 0.4359

tally(˜Gender | Response, data = OneTrueLove)

Response

Gender Agree Disagree Don't know

Female 0.4939 0.5546 0.5641

Male 0.5061 0.4454 0.4359
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Notice that (by default) some of these use counts and some use proportions. Again, we can change the format.

Example2.5c

tally(˜Gender, format = "percent", data = OneTrueLove)

Female Male

53.79 46.21

Example 2.6

Example2.6tally(˜Gender + Award, margin = TRUE, data = StudentSurvey)

Award

Gender Academy Nobel Olympic Total

F 20 76 73 169

M 11 73 109 193

Total 31 149 182 362

Also, we can arrange the table differently by converting it to a data frame.

Example2.6b

as.data.frame(tally(˜Gender + Award, data = StudentSurvey))

Gender Award Freq

1 F Academy 20

2 M Academy 11

3 F Nobel 76

4 M Nobel 73

5 F Olympic 73

6 M Olympic 109

Example2.6c

prop(˜Award, level = "Olympic", data = StudentSurvey)

Olympic

0.5028

Example 2.7

To calculate the difference of certain statistics, we can use the diff() function. Here we use it to find the
difference in proportions, but it can be used for means, medians, and etc.

Example2.7

diff(prop(Award ˜ Gender, level = "Olympic", data = StudentSurvey))
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Olympic.M

0.1328

We will continue more with proportions in Chapter 3.

Figure 2.2

A way to look at multiple groups simultaneously is by using comparative plots such as a segmented bar chart
or side-by-side bar chart. We use the groups argument for this. What groups does depends a bit on the type
of graph. Using groups with histogram() doesn’t work so well because it is difficult to overlay histograms.1

Density plots work better for this.

Notice the addition of groups= (to group), stack= (to segment the graph), and auto.key=TRUE (to build a
simple legend so we can tell which groups are which).

Figure2.2

bargraph(˜Award, groups = Gender, stack = TRUE, auto.key = TRUE, data = StudentSurvey)
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Figure2.2b

bargraph(˜Gender, groups = Award, auto.key = TRUE, data = StudentSurvey)
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1The mosaic function histogram() does do something meaningful with groups in some situations.
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2.2 One Quantitative Variable: Shape and Center

The distribution of a variable answers two questions:
• What values can the variable have?

• With what frequency does each value occur?

Again, the frequency may be described in terms of counts, proportions (often called relative
frequency), or densities (more on densities later).

A distribution may be described using a table (listing values and frequencies) or a graph (e.g., a histogram) or
with words that describe general features of the distribution (e.g., symmetric, skewed).

The Shape of a Distribution

Table 2.14

Table2.14MammalLongevity

Animal Gestation Longevity

1 baboon 187 20

2 bear,black 219 18

3 bear,grizzly 225 25

4 bear,polar 240 20

5 beaver 122 5

6 buffalo 278 15

7 camel 406 12

8 cat 63 12

9 chimpanzee 231 20

10 chipmunk 31 6

11 cow 284 15

12 deer 201 8

13 dog 61 12

14 donkey 365 12

15 elephant 645 40

16 elk 250 15

17 fox 52 7

18 giraffe 425 10

19 goat 151 8

20 gorilla 257 20

21 guinea pig 68 4

22 hippopotamus 238 25

23 horse 330 20

24 kangaroo 42 7

25 leopard 98 12

26 lion 100 15

27 monkey 164 15

28 moose 240 12

29 mouse 21 3

30 opposum 15 1

31 pig 112 10

32 puma 90 12
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33 rabbit 31 5

34 rhinoceros 450 15

35 sea lion 350 12

36 sheep 154 12

37 squirrel 44 10

38 tiger 105 16

39 wolf 63 5

40 zebra 365 15

Statisticians have devised a number of graphs to help us see distributions visually. The general syntax for
making a graph of one variable in a data frame is

plotname(˜variable, data = dataName)

In other words, there are three pieces of information we must provide to R in order to get the plot we want:

• The kind of plot (histogram(), bargraph(), densityplot(), bwplot(), etc.)

• The name of the variable

• The name of the data frame this variable is a part of.

This should look familiar from the previous section.

Figure 2.6

Let’s make a dot plot of the variable Longevity in the MammalLongevity data set for a quick and simple look at
the distribution. We use the syntax provided above with two additional arguments to make the figure look the
way we want it to. The next few sections will explain a few of the different arguments available for plots in R.

Figure2.6

dotPlot(˜Longevity, width = 1, cex = 0.35, data = MammalLongevity)
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Table 2.15

Although tally() works with quantitative variables as well as categorical variables, this is only useful when
there are not too many different values for the variable.

Table2.15

tally(˜Longevity, margin = TRUE, data = MammalLongevity)
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1 3 4 5 6 7 8 10 12 15 16 18 20 25 40

1 1 1 3 1 2 2 3 9 7 1 1 5 2 1

Total

40

Sometimes, it is more convenient to group them into bins. We just have to tell R what the bins are. For example,
suppose we wanted to group together by 5.

Table2.15b

binned.long <- cut(MammalLongevity$Longevity, breaks = c(0, 5, 10, 15, 20, 25, 30, 35, 40))

tally(˜binned.long) # no data frame given because it is not in a data frame

(0,5] (5,10] (10,15] (15,20] (20,25] (25,30] (30,35] (35,40]

6 8 16 7 2 0 0 1

Suppose we wanted to group the 1s, 10s, 20s, etc. together. We want to make sure then that 10 is with the 10s,
so we should add another argument.

Table2.15c

binned.long2 <- cut(MammalLongevity$Longevity, breaks = c(0, 10, 20, 30, 40, 50), right = FALSE)

tally(˜binned.long2) # no data frame given because it is not in a data frame

[0,10) [10,20) [20,30) [30,40) [40,50)

11 21 7 0 1

We won’t use this very often however, since seeing this information in a histogram is typically more useful.

Figure 2.7

Histograms are a way of displaying the distribution of a quantitative variable.

Figure2.7

histogram(˜Longevity, data = MammalLongevity)

histogram(˜Longevity, width = 5, type = "count", center = 2.5, label = TRUE, data = MammalLongevity)
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We can control the (approximate) number of bins using the nint argument, which may be abbreviated as n.
The number of bins (and to a lesser extent the positions of the bins) can make a histogram look quite different.

Figure2.7b

histogram(˜Longevity, type = "count", data = MammalLongevity, n = 8)

histogram(˜Longevity, type = "count", data = MammalLongevity, n = 15)

histogram(˜Longevity, type = "count", data = MammalLongevity, n = 30)
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We can also describe the bins in terms of center and width instead of in terms of the number of bins. This is
especially nice for count or other integer data.

Figure2.7c

histogram(˜Longevity, type = "count", data = MammalLongevity, width = 10)

histogram(˜Longevity, type = "count", data = MammalLongevity, width = 5)

histogram(˜Longevity, type = "count", data = MammalLongevity, width = 2)
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Figure 2.8

The various options available for the histogram() function enable us to replicate Figure 2.8, some including
centering, adding counts, labels, and limit to the y-axis (similar for x-axis).

Figure2.8

histogram(˜ Pulse, type = "count", width = 5, data = StudentSurvey)

histogram(˜ Exercise, type = "count", width = 2, center = 2,

right = FALSE, ylim = c(0,70), data = StudentSurvey)

histogram(˜ Piercings, width = 1, data = StudentSurvey)
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Sometimes a frequency polygon provides a more useful view. The only thing that changes is histogram()

becomes freqpolygon().

freqpolygon

freqpolygon(˜Exercise, width = 5, data = StudentSurvey)
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What is a frequency polygon? The picture below shows how it is related to a histogram. The frequency polygon
is just a dot-to-dot drawing through the centers of the tops of the bars of the histogram.
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R also provides a “smooth” version called a density plot; just change the function name from histogram() to
densityplot().

densityplot

densityplot(˜Longevity, data = MammalLongevity)

densityplot(˜BirthRate, data = AllCountries)
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If we make a histogram (or any of these other plots) of our data, we can describe the overall shape of the dis-
tribution. Keep in mind that the shape of a particular histogram may depend on the choice of bins. Choosing
too many or too few bins can hide the true shape of the distribution. (When in doubt, make more than one
histogram.)

Here are some words we use to describe shapes of distributions.

symmetric The left and right sides are mirror images of each other.

skewed The distribution stretches out farther in one direction than in the other. (We say the distribution is
skewed toward the long tail.)

uniform The heights of all the bars are (roughly) the same. (So the data are equally likely to be anywhere
within some range.)

unimodal There is one major “bump” where there is a lot of data.

bimodal There are two “bumps”.

outlier An observation that does not fit the overall pattern of the rest of the data.

The Center of a Distribution

Recall that a statistic is a number computed from data. The mean and the median are key statistics which de-
scribe the center of a distribution. We can see through Example 2.11 that numerical summaries are computed
using the same template as graphical summaries.

Note that the example asks about subsets of ICUAdmissions–specifically about 20-year-old and 55-year-old
patients. In this case, we can manipulate the data (to name a new data set) with the subset command. Here
are some examples.

1. Select only the males from the ICUAdmissions data set.

subset
head(ICUAdmissions, 2)

ID Status Age Sex Race Service Cancer Renal Infection CPR Systolic HeartRate Previous

1 8 0 27 1 1 0 0 0 1 0 142 88 0

2 12 0 59 0 1 0 0 0 0 0 112 80 1

Type Fracture PO2 PH PCO2 Bicarbonate Creatinine Consciousness status sex race

1 1 0 0 0 0 0 0 1 Lived Female White

2 1 0 0 0 0 0 0 1 Lived Male White

service cancer renal infection cpr previous type pO2low pO2 pHlow pH pCO2hi pCO2
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1 Medical No No Yes No No Emergency No Hi No Hi No Low

2 Medical No No No No Yes Emergency No Hi No Hi No Low

bicarbonateLow bicarbonate creatinineHi creatinine consciousness

1 No Hi No Low Conscious

2 No Hi No Low Conscious

tally(˜sex, data = ICUAdmissions)

Female Male

76 124

ICUMales <- subset(ICUAdmissions, sex == "Male") # notice the double =

tally(˜sex, data = ICUMales)

Female Male

0 124

2. Select only the subjects over 50:

subset2
ICUOld <- subset(ICUAdmissions, Age > 50)

The subset() function can use any condition that evaluates to TRUE or FALSE for each row (case) in the data
set.

Example 2.11

Example2.11ICU20 <- subset(ICUAdmissions, Age == "20")

mean(˜HeartRate, data = ICU20)

[1] 82.2

median(˜HeartRate, data = ICU20)

[1] 80

ICU55 = subset(ICUAdmissions, Age == "55")

mean(˜HeartRate, data = ICU55)

[1] 108.5

median(˜HeartRate, data = ICU55)

[1] 106
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Resistance

Figure 2.10

Figure2.10head(FloridaLakes)

ID Lake Alkalinity pH Calcium Chlorophyll AvgMercury NumSamples MinMercury

1 1 Alligator 5.9 6.1 3.0 0.7 1.23 5 0.85

2 2 Annie 3.5 5.1 1.9 3.2 1.33 7 0.92

3 3 Apopka 116.0 9.1 44.1 128.3 0.04 6 0.04

4 4 Blue Cypress 39.4 6.9 16.4 3.5 0.44 12 0.13

5 5 Brick 2.5 4.6 2.9 1.8 1.20 12 0.69

6 6 Bryant 19.6 7.3 4.5 44.1 0.27 14 0.04

MaxMercury ThreeYrStdMercury AgeData

1 1.43 1.53 1

2 1.90 1.33 0

3 0.06 0.04 0

4 0.84 0.44 0

5 1.50 1.33 1

6 0.48 0.25 1

histogram(˜Alkalinity, width = 10, type = "count", data = FloridaLakes)
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Example 2.14

Example2.14mean(˜Alkalinity, data = FloridaLakes)

[1] 37.53

median(˜Alkalinity, data = FloridaLakes)

[1] 19.6
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2.3 One Quantitative Variable: Measures of Spread

In the previous section, we investigated center summary statistics. In this section, we will cover some other
important statistics.

Example 2.15

Example2.15summary(April14Temps)

Year DesMoines SanFrancisco

Min. :1995 Min. :37.2 Min. :48.7

1st Qu.:1999 1st Qu.:44.4 1st Qu.:51.3

Median :2002 Median :54.5 Median :54.0

Mean :2002 Mean :54.5 Mean :54.0

3rd Qu.:2006 3rd Qu.:61.3 3rd Qu.:55.9

Max. :2010 Max. :74.9 Max. :61.0

favstats(˜DesMoines, data = April14Temps) # some favorite statistics

min Q1 median Q3 max mean sd n missing

37.2 44.4 54.5 61.28 74.9 54.49 11.73 16 0

favstats(˜SanFrancisco, data = April14Temps)

min Q1 median Q3 max mean sd n missing

48.7 51.3 54 55.9 61 54.01 3.377 16 0

Standard Deviation

The density plots of the temperatures of Des Moines and San Francisco reveal that Des Moines has a greater
variability or spread.

Figure 2.18

The cex argument controls “character expansion” and can be used to make the plotting “characters” larger or
smaller by specifying the scaling ratio. xlim sets the limits for the x-axis.

Figure2.18

dotPlot(˜DesMoines, width = 1, cex = 0.25, xlim = c(35, 80), data = April14Temps)

dotPlot(˜SanFrancisco, width = 1, cex = 0.35, xlim = c(35, 80), data = April14Temps)
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Example 2.16

Although both summary() and favstats() calculate the standard deviation of a variable, we can also use
sd() to find just the standard deviation.

standard-deviation

sd(˜DesMoines, data = April14Temps)

[1] 11.73

sd(˜SanFrancisco, data = April14Temps)

[1] 3.377

var(˜DesMoines, data = April14Temps) # variance = sdˆ2

[1] 137.6

Example 2.17

To see that the distribution is indeed symmetric and approximately bell-shaped, you can use the argument
fit to overlay a “normal” curve.

Example2.17

histogram(˜Pulse, fit = "normal", data = StudentSurvey)

mean <- mean(˜Pulse, data = StudentSurvey)

mean

[1] 69.57
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sd <- sd(˜Pulse, data = StudentSurvey)

sd

[1] 12.21

mean - 2 * sd

[1] 45.16

mean + 2 * sd

[1] 93.98

Pulse

D
en

si
ty

0.00

0.01

0.02

0.03

40 60 80 100 120 140

Figure 2.20

Figure2.20histogram(˜Sales, type = "count", data = RetailSales)
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Example 2.18
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Example2.18mean <- mean(˜Sales, data = RetailSales)

mean

[1] 296.4

sd <- sd(˜Sales, data = RetailSales)

sd

[1] 37.97

mean - 2 * sd

[1] 220.5

mean + 2 * sd

[1] 372.4

Example 2.19

Z-scores can be computed as follows:

Example2.19

(204 - mean(˜Systolic, data = ICUAdmissions))/sd(˜Systolic, data = ICUAdmissions)

[1] 2.176

(52 - mean(˜HeartRate, data = ICUAdmissions))/sd(˜HeartRate, data = ICUAdmissions)

[1] -1.749

Percentiles

Figure 2.21

Figure2.21histogram(˜Close, type = "count", width = 20, center = 10, data = SandP500)
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Example 2.20

The text uses a histogram to estimate the percentile of the daily closing price for the S&P 500 but we can also
find the exact percentiles using the quantile() function.

Example2.20

quantile(SandP500$Close, probs = seq(0, 1, 0.25))

0% 25% 50% 75% 100%

1023 1095 1137 1183 1260

quantile(SandP500$Close, probs = seq(0, 1, 0.9))

0% 90%

1023 1217

Five Number Summary

We have already covered many different functions which results in the five number summary but fivenum()
is most direct way to obtain in the five number summary.

Example 2.21

Example2.21fivenum(˜Exercise, data = StudentSurvey)

Example 2.22

Example2.22fivenum(˜Longevity, data = MammalLongevity)

[1] 1.0 8.0 12.0 15.5 40.0

©2014 Last Modified: September 4, 2014



56 Describing Data

min(˜Longevity, data = MammalLongevity)

[1] 1

max(˜Longevity, data = MammalLongevity)

[1] 40

range(˜Longevity, data = MammalLongevity) # subtract to get the numerical range value

[1] 1 40

iqr(˜Longevity, data = MammalLongevity) # interquartile range

[1] 7.25

Note the difference in the quartile and IQR from the textbook. This results because there are several different
methods to determine the quartile.

Example 2.23

Example2.23fivenum(˜DesMoines, data = April14Temps)

[1] 37.20 44.40 54.50 61.95 74.90

fivenum(˜SanFrancisco, data = April14Temps)

[1] 48.7 51.2 54.0 56.0 61.0

range(˜DesMoines, data = April14Temps)

[1] 37.2 74.9

diff(range(˜DesMoines, data = April14Temps))

[1] 37.7

range(˜SanFrancisco, data = April14Temps)

[1] 48.7 61.0

diff(range(˜SanFrancisco, data = April14Temps))

[1] 12.3
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iqr(˜DesMoines, data = April14Temps)

[1] 16.88

iqr(˜SanFrancisco, data = April14Temps)

[1] 4.6

2.4 Outliers, Boxplots, and Quantitative/Categorical Relationships

Detection of Outliers

Generally, outliers are considered to be values

• less than Q1 − 1.5 · (IQR), and

• greater than Q3 + 1.5 · (IQR).

Example 2.25

Example2.25fivenum(˜Longevity, data = MammalLongevity)

[1] 1.0 8.0 12.0 15.5 40.0

iqr(˜Longevity, data = MammalLongevity)

[1] 7.25

8 - 1.5 * 7.25

[1] -2.875

15.5 + 1.5 * 7.25

[1] 26.38

subset(MammalLongevity, Longevity > 26.375)

Animal Gestation Longevity

15 elephant 645 40

There is no function in R that directly results in outliers because practically, there is no one specific formula
for such a determination. However, a boxplot will indirectly reveal outliers.
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Boxplots

A way to visualize the five number summary and outliers for a variable is to create a boxplot.

Example 2.26

Example2.26favstats(˜Longevity, data = MammalLongevity)

min Q1 median Q3 max mean sd n missing

1 8 12 15.25 40 13.15 7.245 40 0

bwplot(˜Longevity, data = MammalLongevity)

Longevity

0 10 20 30 40

● ●

Figure 2.32

Figure2.32bwplot(˜Smokers, data = USStates)

Smokers

15 20 25

● ●●

Example 2.27

We can similarity investigate the Smokers variable in USStates.

Example2.27

fivenum(˜Smokers, data = USStates)

[1] 11.5 19.3 20.6 22.6 28.7
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The boxplot reveals two outliers. To identify them, we can again use subset() for smokers greater or less than
the whiskers of the boxplot.

Example2.27b

subset(USStates, Smokers < 15)

State HouseholdIncome IQ McCainVote Region ObamaMcCain Population EighthGradeMath

44 Utah 55619 101.1 0.629 W M 2.421 279.2

HighSchool GSP FiveVegetables Smokers PhysicalActivity Obese College NonWhite

44 91 36758 22.1 11.5 83.1 21.2 31 12.1

HeavyDrinkers Pres2008

44 2.9 McCain

subset(USStates, Smokers > 28)

State HouseholdIncome IQ McCainVote Region ObamaMcCain Population EighthGradeMath

17 Kentucky 38694 99.4 0.575 MW M 4.142 274

HighSchool GSP FiveVegetables Smokers PhysicalActivity Obese College NonWhite

17 81.8 33666 16.8 28.7 70.1 28.6 22.6 9.4

HeavyDrinkers Pres2008

17 2.7 McCain

Figure 2.33

Figure2.33bwplot(˜Budget, data = HollywoodMovies2011)

Budget

0 50 100 150 200 250

● ●● ●● ●● ●●●●

Example 2.28

Example2.28subset(HollywoodMovies2011, Budget > 225)

Movie LeadStudio RottenTomatoes AudienceScore

30 Pirates of the Caribbean:\nOn Stranger Tides Disney 34 61

Story Genre TheatersOpenWeek BOAverageOpenWeek DomesticGross ForeignGross WorldGross

30 Quest Action 4155 21697 241.1 802.8 1044

Budget Profitability OpeningWeekend

30 250 4.175 90.15

head(HollywoodMovies2011)
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Movie LeadStudio RottenTomatoes

1 Insidious Sony 67

2 Paranormal Activity 3 Independent 68

3 Bad Teacher Independent 44

4 Harry Potter and the Deathly Hallows Part 2 Warner Bros 96

5 Bridesmaids Relativity Media 90

6 Midnight in Paris Sony 93

AudienceScore Story Genre TheatersOpenWeek BOAverageOpenWeek DomesticGross

1 65 Monster Force Horror 2408 5511 54.01

2 58 Monster Force Horror 3321 15829 103.66

3 38 Comedy Comedy 3049 10365 100.29

4 92 Rivalry Fantasy 4375 38672 381.01

5 77 Rivalry Comedy 2918 8995 169.11

6 84 Love Romance 944 6177 56.18

ForeignGross WorldGross Budget Profitability OpeningWeekend

1 43.00 97.01 1.5 64.673 13.27

2 98.24 201.90 5.0 40.379 52.57

3 115.90 216.20 20.0 10.810 31.60

4 947.10 1328.11 125.0 10.625 169.19

5 119.28 288.38 32.5 8.873 26.25

6 83.00 139.18 17.0 8.187 5.83

One Quantitative and One Categorical Variable

The formula for a lattice plot can be extended to create multiple panels (sometimes called facets) based on
a “condition”, often given by another variable. This is another way to look at multiple groups simultaneously.
The general syntax for this becomes

plotname(˜variable | condition, data = dataName)

Figure 2.34

Depending on the type of plot, you will want to use conditioning.

Figure2.34

bwplot(Gender ˜ TV, data = StudentSurvey)

dotPlot(˜TV | Gender, layout = c(1, 2), width = 1, cex = 1, data = StudentSurvey)
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We can do the same thing for bar graphs.
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Figure2.34b

bargraph(˜Award | Gender, data = StudentSurvey)
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This graph should be familiar as we have plotted these variables together previously. Here we used different
panels, but before, in 2.1, we had used grouping. Note that we can combine grouping and conditioning in the
same plot.

Example 2.31

Example2.31favstats(˜TV | Gender, data = StudentSurvey)

diff(mean(˜TV | Gender, data = StudentSurvey))

2.5 Two Quantitative Variables: Scatterplot and Correlation

Example 2.32

Example2.32ElectionMargin

Year Candidate Approval Margin Result

1 1940 Roosevelt 62 10.0 Won

2 1948 Truman 50 4.5 Won

3 1956 Eisenhower 70 15.4 Won

4 1964 Johnson 67 22.6 Won

5 1972 Nixon 57 23.2 Won

6 1976 Ford 48 -2.1 Lost

7 1980 Carter 31 -9.7 Lost

8 1984 Reagan 57 18.2 Won

9 1992 G.H.W.Bush 39 -5.5 Lost

10 1996 Clinton 55 8.5 Won

11 2004 G.W.Bush 49 2.4 Won
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Visualizing a Relationship between Two Quantitative Variables: Scatterplots

The most common way to look at two quantitative variables is with a scatterplot. The lattice function for
this is xyplot(), and the basic syntax is

xyplot(yvar ˜ xvar, data = dataName)

Notice that now we have something on both sides of the ˜ since we need to tell R about two variables.

Example 2.33

Example2.33xyplot(Margin ˜ Approval, data = ElectionMargin)
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Figure 2.49

Figure2.49xyplot(AvgMercury ˜ pH, data = FloridaLakes)

xyplot(AvgMercury ˜ Alkalinity, data = FloridaLakes)

xyplot(Alkalinity ˜ pH, data = FloridaLakes)

xyplot(AvgMercury ˜ ThreeYrStdMercury, data = FloridaLakes)
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Summarizing a Relationship between Two Quantitative Variables: Correlation

Another key numerical statistic is the correlation–the correlation is a measure of the strength and direction of
the relationship between two quantitative variables.

Table2.30

cor(Margin ˜ Approval, data = ElectionMargin)

[1] 0.863

cor(AvgMercury ˜ pH, data = FloridaLakes)

[1] -0.5754

cor(AvgMercury ˜ Alkalinity, data = FloridaLakes)

[1] -0.5939

cor(Alkalinity ˜ pH, data = FloridaLakes)

[1] 0.7192

cor(AvgMercury ˜ ThreeYrStdMercury, data = FloridaLakes)

[1] 0.9592

Table 2.31

Table2.31CricketChirps

Temperature Chirps

1 54.5 81
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2 59.5 97

3 63.5 103

4 67.5 123

5 72.0 150

6 78.5 182

7 83.0 195

Figure 2.50

Figure2.50xyplot(Temperature ˜ Chirps, data = CricketChirps)
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Example 2.35

Example2.35cor(Temperature ˜ Chirps, data = CricketChirps)

[1] 0.9906

Example 2.38

Further, using the subset() function again, we can investigate the correlation between variables with some
restrictions.

Example2.38

xyplot(Alcohol ˜ Calories, data = subset(NutritionStudy, Age > 59))

cor(Alcohol ˜ Calories, data = subset(NutritionStudy, Age > 59))

[1] 0.72
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And now we omit the outlier

Example2.38b

NutritionStudy60 = subset(NutritionStudy, Age > 59)

xyplot(Alcohol ˜ Calories, data = subset(NutritionStudy60, Alcohol < 25))

cor(Alcohol ˜ Calories, data = subset(NutritionStudy60, Alcohol < 25))

[1] 0.145
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2.6 Two Quantitative Variables: Linear Regression

Figure 2.63

Figure2.63xyplot(Tip ˜ Bill, cex = 0.5, data = RestaurantTips)
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Example 2.39

When the relationship between variables is sufficiently linear, you may be able to predict the value of a variable
using the other variable. This is possible by fitting a regression line. To plot this in R, all we need to do is add
an additional argument, type=c("p", "r"), to the xyplot.

Example2.39

xyplot(Tip ˜ Bill, cex = 0.5, type = c("p", "r"), data = RestaurantTips)

cor(Tip ˜ Bill, data = RestaurantTips)

[1] 0.9151
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The equation for the regression line, or the prediction equation is

�Response = a+ b ·Explanatory

So now, we need to find the values for a, the intercept, and b, the slope using the function to fit linear models.

Example 2.41

Example2.41lm(Tip ˜ Bill, data = RestaurantTips)
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Call:

lm(formula = Tip ˜ Bill, data = RestaurantTips)

Coefficients:

(Intercept) Bill

-0.292 0.182

coef(lm(Tip ˜ Bill, data = RestaurantTips)) # just show me the coefficients

(Intercept) Bill

-0.2923 0.1822

This results in the equation
T̂ip = −0.2923 + 0.1822 ·Bill

With this equation, one can predict the tip for different bill amounts.

Example2.41b

Tip.Fun <- makeFun(lm(Tip ˜ Bill, data = RestaurantTips)) # make a function of the linear model

Tip.Fun(Bill = 59.33) # predicted tip when bill is $59.33

1

10.52

Tip.Fun(Bill = 9.52)

1

1.442

Tip.Fun(Bill = 23.7)

1

4.026

An important aspect of the linear regression is the difference between the prediction and actual observation.
This is called the residual, defined

residual = observed response−predicted response

Example 2.42

Example2.42Resid.a <- 10 - 10.51 # predicted tip from Example 2.41

Resid.a

[1] -0.51

Resid.b <- 1 - 1.44

Resid.b
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[1] -0.44

Resid.c <- 10 - 4.02

Resid.c

[1] 5.98

Example 2.43

Example2.43Elect.mod <- lm(Margin ˜ Approval, data = ElectionMargin)

resid(lm(Margin ˜ Approval, data = ElectionMargin))

1 2 3 4 5 6 7 8 9 10 11

-5.3229 -0.7959 -6.6075 3.0992 12.0551 -5.7247 0.8802 7.0551 -1.6045 -0.9738 -2.0603

Example 2.45

Example2.45lm(AvgMercury ˜ pH, data = FloridaLakes)

Call:

lm(formula = AvgMercury ˜ pH, data = FloridaLakes)

Coefficients:

(Intercept) pH

1.531 -0.152

xyplot(AvgMercury ˜ pH, type = c("p", "r"), data = FloridaLakes)
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Example2.45b

Mer.Fun <- makeFun(lm(AvgMercury ˜ pH, data = FloridaLakes))

Mer.Fun(pH = 7.5) # predicted mercury level at 7.5 pH
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1

0.3887

Resid <- 1.1 - 0.388 # residual at 7.5 pH

Resid

[1] 0.712

Example 2.46

Example2.46Cal.Fun <- makeFun(lm(Calcium ˜ pH, data = FloridaLakes))

Cal.Fun

function (pH, ..., transform = identity)

return(transform(predict(model, newdata = data.frame(pH = pH),

...)))

<environment: 0x7fdc7817ac00>

attr(,"coefficients")

(Intercept) pH

-51.40 11.17

Figure 2.68

Figure2.68xyplot(Calcium ˜ pH, type = c("p", "r"), data = FloridaLakes)
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3
Confidence Intervals

3.1 Sampling Distributions

The key idea in this chapter is the notion of a sampling distribution. Do not confuse it with the population
(what we would like to know about) or the sample (what we actually have data about). If we could repeatedly
sample from a population, and if we computed a statistic from each sample, the distribution of those statistics
would be the sampling distribution. Sampling distributions tell us how things vary from sample to sample
and are the key to interpreting data.

Variability of Sample Statistics

Example 3.4

Example3.4head(StatisticsPhD)

University Department FTGradEnrollment

1 Baylor University Statistics 26

2 Boston University Biostatistics 39

3 Brown University Biostatistics 21

4 Carnegie Mellon University Statistics 39

5 Case Western Reserve University Statistics 11

6 Colorado State University Statistics 14

mean(˜FTGradEnrollment, data = StatisticsPhD) # mean enrollment in original population

[1] 53.54

Example 3.5

To select a random sample of a certain size in R, we can use the sample() function.
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Example3.5

sample10 <- sample(StatisticsPhD, 10)

sample10

University Department FTGradEnrollment orig.ids

23 Michigan State University Statistics 81 23

28 Ohio State University Statistics 101 28

11 Emory University Biostatistics 58 11

21 Medical College of Wisconsin Biostatistics 7 21

15 Harvard University Biostatistics 70 15

29 Oklahoma State University Statistics 22 29

13 George Mason University Statistics 10 13

5 Case Western Reserve University Statistics 11 5

9 Cornell University Statistics 78 9

81 Western Michigan Statistics Statistics 31 81

x.bar <- mean(˜FTGradEnrollment, data = sample10)

x.bar # mean enrollment in sample10

[1] 46.9

Note that this sample has been assigned a name to which we can refer back to find the mean of that particular
sample.

Example3.5b

mean(˜FTGradEnrollment, data = sample(StatisticsPhD, 10)) # mean enrollment in another sample

[1] 65.3

Figure 3.1

We should check that that our sample distribution has an appropriate shape:

Figure3.1

# Now we'll do it 1000 times

sampledist <- do(1000) * mean(˜FTGradEnrollment, data = sample(StatisticsPhD, 10))

head(sampledist, 3)

result

1 44.6

2 58.3

3 61.0

dotPlot(˜result, width = 0.005, data = sampledist)
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In many (but not all) situations, the sampling distribution is

• unimodal,

• symmetric, and

• bell-shaped (The technical phrase is “approximately normal”.)

Example 3.6

This time we don’t have data, but instead we have a summary of the data. We can however, still simulate the
sample distribution by using the rflip() function.

Example3.6

sampledist.deg <- do(1000) * rflip(200, 0.275) # 1000 samples, each of size 200 and proportion 0.275

head(sampledist.deg, 3)

n heads tails prop

1 200 63 137 0.315

2 200 58 142 0.290

3 200 60 140 0.300

dotPlot(˜prop, width = 0.005, data = sampledist.deg)
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Measuring Sampling Variability: The Standard Error

The standard deviation of a sampling distribution is called the standard error, denoted SE.

The standard error is our primary way of measuring how much variability there is from sample statistic to
sample statistic, and therefore how precise our estimates are.

Example 3.7

Calculating the SE is the same as calculating the standard deviation of a sampling distribution, so we use sd().

Example3.7

SE <- sd(˜result, data = sampledist)

SE # sample from Example 3.5

[1] 10.86

SE2 <- sd(˜prop, data = sampledist.deg)

SE2 # sample from Example 3.6

[1] 0.03147

The Importance of Sample Size

Example 3.9

Last Modified: September 4, 2014 ©2014
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Example3.9sampledist.1000 <- do(1000) * rflip(1000, 0.275) # 1000 samples, each of size 1000 and proportion 0.275

sampledist.200 <- do(1000) * rflip(200, 0.275) # 1000 samples, each of size 200 and proportion 0.275

sampledist.50 <- do(1000) * rflip(50, 0.275) # 1000 samples, each of size 50 and proportion 0.275

Figure 3.3

Figure3.3dotPlot(˜prop, width = 0.005, xlim = c(0.05, 0.5), data = sampledist.1000)

dotPlot(˜prop, width = 0.005, xlim = c(0.05, 0.5), data = sampledist.200)

dotPlot(˜prop, width = 0.005, xlim = c(0.05, 0.5), data = sampledist.50)
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3.2 Understanding and Interpreting Confidence Intervals

Interval Estimates and Margin of Error

An interval estimate gives a range of plausible values for a population parameter.

This is better than a single number (also called a point estimate) because it gives some indication of the preci-
sion of the estimate.

One way to express an interval estimate is with a point estimate and a margin of error.

We can convert margin of error into an interval by adding and subtracting the margin of error to/from the
statistic.

Example 3.12

Example3.12p.hat <- 0.42 # sample proportion

MoE <- 0.03 # margin of error

p.hat - MoE # lower limit of interval estimate

[1] 0.39

p.hat + MoE # upper limit of interval estimate

[1] 0.45

©2014 Last Modified: September 4, 2014



76 Confidence Intervals

Example 3.13

Example3.13p.hat <- 0.54 # sample proportion

MoE <- 0.02 # margin of error

p.hat - MoE # lower limit of interval estimate

[1] 0.52

p.hat + MoE # upper limit of interval estimate

[1] 0.56

Example3.13b

p.hat <- 0.54

MoE <- 0.1

p.hat - MoE

[1] 0.44

p.hat + MoE

[1] 0.64

Confidence Intervals

A confidence interval for a parameter is an interval computed from sample data by a method that will
capture the parameter for a specified proportion of all samples

1. The probability of correctly containing the parameter is called the coverage rate or confidence level.

2. So 95% of 95% confidence intervals contain the parameter being estimated.

3. The margins of error in the tables above were designed to produce 95% confidence intervals.

Example 3.14

Example3.14x.bar <- 61.5 # given sample mean

SE <- 11 # given estimated standard error

MoE <- 2 * SE; MoE # margin of error for 95% CI

[1] 22

x.bar - MoE # lower limit of 95% CI
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[1] 39.5

x.bar + MoE # upper limit of 95% CI

[1] 83.5

Understanding Confidence Intervals

Example 3.15

Example3.15SE <- 0.03

p1 <- 0.26

p2 <- 0.32

p3 <- 0.2

MoE <- 2 * SE

Example3.15b

p1 - MoE

[1] 0.2

p1 + MoE

[1] 0.32

p2 - MoE

[1] 0.26

p2 + MoE

[1] 0.38

p3 - MoE

[1] 0.14

p3 + MoE

[1] 0.26

Figure 3.12

©2014 Last Modified: September 4, 2014
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Figure3.12p <- 0.275

SE <- 0.03

MoE <- 2 * SE

p - MoE

[1] 0.215

p + MoE

[1] 0.335

dotPlot(˜prop, width = 0.005, groups = (0.215 <= prop & prop <= 0.335), data = sampledist.deg)
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Notice how we defined groups in this dotplot. We are grouping proportions that less than 0.215 and more
than 0.335.

Figure 3.13

We can create the data needed for plots like Figure 3.13 using CIsim(). The plot itself uses xYplot() from the
Hmisc package.

Figure3.13

results <- CIsim(200, samples = 3, rdist = rbinom, args = list(size = 1, prob = 0.275), method = binom.test,

method.args = list(success = 1), verbose = FALSE, estimand = 0.275)

require(Hmisc)

xYplot(Cbind(estimate, lower, upper) ˜ sample, data = results, par.settings = col.mosaic(),

groups = cover)

sample

es
tim

at
e

0.25

0.30

0.35

1.0 1.5 2.0 2.5 3.0
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Figure3.13b

results <- CIsim(200, samples = 100, rdist = rbinom, args = list(size = 1, prob = 0.275), method = binom.test,

method.args = list(success = 1), verbose = FALSE, estimand = 0.275)

require(Hmisc)

xYplot(Cbind(estimate, lower, upper) ˜ sample, data = results, par.settings = col.mosaic(),

groups = cover)
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Interpreting Confidence Intervals

Example 3.16

Example3.16x.bar <- 27.655

SE <- 0.009

MoE <- 2 * SE

x.bar - MoE

[1] 27.64

x.bar + MoE

[1] 27.67

Example 3.17

Example3.17diff.x <- -1.915

SE <- 0.016

MoE <- 2 * SE

diff.x - MoE

[1] -1.947

diff.x + MoE

[1] -1.883
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3.3 Constructing Bootstrap Confidence Intervals

Here’s the clever idea: We don’t have the population, but we have a sample. Probably the sample it similar to
the population in many ways. So let’s sample from our sample. We’ll call it resampling (also called bootstrap-
ping). We want samples the same size as our original sample, so we will need to sample with replacement.
This means that we may pick some members of the population more than once and others not at all. We’ll do
this many times, however, so each member of our sample will get its fair share. (Notice the similarity to and
difference from sampling from populations in the previous sections.)

Figure 3.14

Figure3.14dotPlot(˜Time, width = 1, data = CommuteAtlanta)
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Bootstrap Samples

Table 3.7

The computer can easily do all of the resampling by using the resample().

Table3.7

mean(˜Time, data = resample(CommuteAtlanta)) # mean commute time in one resample

[1] 30.08

mean(˜Time, data = resample(CommuteAtlanta)) # mean commute time in another resample

[1] 30.85

mean(˜Time, data = resample(CommuteAtlanta))

[1] 28.32
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Bootstrap Distribution

Figure 3.16

The example below uses data from 500 Atlanta commuters.

Figure3.16

# Now we'll do it 1000 times

Bootstrap <- do(1000) * mean(˜Time, data = resample(CommuteAtlanta))

head(Bootstrap, 3)

result

1 30.84

2 30.76

3 28.64

# We should check that that our bootstrap distribution has an appropriate shape:

dotPlot(˜result, width = 0.005, data = Bootstrap)
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Example 3.19

Example3.19BootP <- do(1000) * rflip(100, 0.52)

head(BootP, 3)

n heads tails prop

1 100 51 49 0.51

2 100 48 52 0.48

3 100 52 48 0.52

dotPlot(˜prop, width = 0.01, data = BootP)
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Example 3.20

Variables can be created in R using the c() function then collected into a data frame using the data.frame()

function.

Example3.20

Laughter <- data.frame(NumLaughs = c(16, 22, 9, 31, 6, 42))

mean(˜NumLaughs, data = Laughter)

[1] 21

Example3.20b

mean(˜NumLaughs, data = resample(Laughter))

[1] 30.83

mean(˜NumLaughs, data = resample(Laughter))

[1] 19.33

mean(˜NumLaughs, data = resample(Laughter))

[1] 22.33

Estimating Standard Error Based on a Bootstrap Distribution

Example 3.21

Since the shape of the bootstrap distribution from Example 3.19 looks good, we can estimate the standard
error.
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Example3.21

SE <- sd(˜prop, data = BootP)

SE

[1] 0.04783

95 % Confidence Interval Based on a Bootstrap Standard Error

Example 3.22

We can again use the standard error to compute a 95% confidence interval.

Example3.22

x.bar <- mean(˜Time, data = CommuteAtlanta); x.bar

[1] 29.11

SE <- sd(˜result, data = Bootstrap ); SE # standard error

[1] 0.917

MoE <- 2 * SE; MoE # margin of error for 95% CI

[1] 1.834

x.bar - MoE # lower limit of 95% CI

[1] 27.28

x.bar + MoE # upper limit of 95% CI

[1] 30.94

Example3.22b

p.hat <- 0.52

SE <- sd(˜prop, data = BootP)

SE

[1] 0.04783

MoE <- 2 * SE

MoE

[1] 0.09565
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p.hat - MoE

[1] 0.4243

p.hat + MoE

[1] 0.6157

The steps used in this example get used in a wide variety of confidence interval situations.

1. Compute the statistic from the original sample.

2. Create a bootstrap distribution by resampling from the sample.

(a) same size samples as the original sample

(b) with replacement

(c) compute the statistic for each sample

The distribution of these statistics is the bootstrap distribution

3. Estimate the standard error SE by computing the standard deviation of the bootstrap distribution.

4. 95% CI is
statistic± 2SE

3.4 Bootstrap Confidence Intervals Using Percentiles

Confidence Intervals Based on Bootstrap Percentiles

Example 3.23

Another way to create a 95% confidence interval is to use the middle 95% of the bootstrap distribution. The
cdata() function can compute this for us as follows:

Example3.23

cdata(0.95, result, data = Bootstrap)

low hi central.p

27.35 30.79 0.95

This is not exactly the same as the interval of the original sample, but it is pretty close.

Figure 3.22

Figure3.22dotPlot(˜result, width = 0.1, groups = (27.43 <= result & result <= 31.05), data = Bootstrap)
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Notice the groups= for marking the confidence interval.

Example 3.24

One advantage of this method is that it is easy to change the confidence level.

To make a 90% and 99% confidence interval, we use the middle 90% and 99% of the sample distribution
instead.

Example3.24

cdata(0.9, result, data = Bootstrap)

low hi central.p

27.61 30.53 0.90

dotPlot(˜result, width = 0.1, groups = (27.7 <= result & result <= 30.71), data = Bootstrap)

cdata(0.99, result, data = Bootstrap)

low hi central.p

26.95 31.59 0.99

dotPlot(˜result, width = 0.1, groups = (26.98 <= result & result <= 31.63), data = Bootstrap)
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Finding Confidence Intervals for Many Different Parameters

Figure 3.24

Figure3.24bwplot(Gender ˜ Exercise, data = ExerciseHours)

Exercise

F

M

0 10 20 30

●

●

●

Example 3.25

Example3.25head(ExerciseHours)

Year Gender Hand Exercise TV Pulse Pierces

1 4 M l 15 5 57 0

2 2 M l 20 14 70 0

3 3 F r 2 3 70 2

4 1 F l 10 5 66 3

5 1 M r 8 2 62 0

6 1 M r 14 14 62 0

favstats(˜Exercise | Gender, data = ExerciseHours)

.group min Q1 median Q3 max mean sd n missing

1 F 0 3 10 12.00 34 9.4 7.407 30 0

2 M 2 3 12 19.25 30 12.4 8.798 20 0
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stat <- diff(mean(Exercise ˜ Gender, data = ExerciseHours))

stat

M

3

Example3.25b

BootE <- do(3000) * diff(mean(Exercise ˜ Gender, data = resample(ExerciseHours)))

head(BootE, 3)

M

1 -0.2372

2 5.2394

3 3.1461

Example3.25c

cdata(0.95, M, data = BootE)

low hi central.p

-1.643 7.490 0.950

dotPlot(˜M, width = 0.25, cex = 0.75, groups = (-1.717 <= M & M <= 7.633), xlab = "Difference in mean",

data = BootE)
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Example3.25d

SE <- sd(˜M, data = BootE)

SE

[1] 2.369

stat - 2 * SE
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M

-1.739

stat + 2 * SE

M

7.739

Figure 3.26

Figure3.26xyplot(Price ˜ Miles, ylab = "Price ($1000s)", xlab = "Miles (1000s)", data = MustangPrice)

cor(Price ˜ Miles, data = MustangPrice)
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Example 3.26

Example3.26BootM <- do(5000) * cor(Price ˜ Miles, data = resample((MustangPrice)))

head(BootM, 3)

result

1 -0.7513

2 -0.9226

3 -0.8620

Example3.26b

cdata(0.98, result, data = BootM)

low hi central.p

-0.9377 -0.7020 0.9800

dotPlot(˜result, width = 0.005, groups = (-0.94 <= result & result <= -0.705), xlab = "r",

data = BootM)
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Another Look at the Effect of Sample Size

Example 3.27

Example3.27BootP400 <- do(1000) * rflip(400, 0.52)

head(BootP400, 3)

n heads tails prop

1 400 189 211 0.4725

2 400 212 188 0.5300

3 400 210 190 0.5250

cdata(0.95, prop, data = BootP400)

low hi central.p

0.4675 0.5651 0.9500

dotPlot(˜prop, width = 0.005, groups = (0.472 <= prop & prop <= 0.568), data = BootP400)
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One Caution on Constructing Bootstrap Confidence Intervals

Example 3.28

Example3.28median(˜Price, data = MustangPrice)

[1] 11.9

Boot.Mustang <- do(5000) * median(˜Price, data = resample(MustangPrice))

head(Boot.Mustang, 3)

result

1 11.9

2 13.0

3 11.9

histogram(˜result, n = 50, data = Boot.Mustang)
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result

D
en

si
ty

0.0

0.2

0.4

0.6

10 15 20 25

This time the histogram does not have the desired shape. There are two problems:

1. The distribution is not symmetric. (It is right skewed.)

2. The distribution has spikes and gaps.

Since the median must be an element of the sample when the sample size is 25, there are only 25 possible
values for the median (and some of these are very unlikely.

Since the bootstrap distribution does not look like a normal distribution (bell-shaped, symmetric), we cannot
safely use our methods for creating a confidence interval.
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4
Hypothesis Tests

4.1 Introducing Hypothesis Tests

The 4-step outline

The following 4-step outline is a useful way to organize the ideas of hypothesis testing.

1. State the Null and Alternative Hypotheses

2. Compute the Test Statistic

The test statistic is a number that summarizes the evidence

3. Determine the p-value (from the Randomization Distribution)

4. Draw a conclusion

Null and Alternative Hypotheses

Figure 4.1

Figure4.1xyplot(ZPenYds ˜ NFL_Malevolence, type = c("p", "r"), data = MalevolentUniformsNFL)
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94 Hypothesis Tests

4.2 Measuring Evidence with P-values

Randomization distributions are a bit like bootstrap distributions except that instead of resampling from our
sample (in an attempt to approximate resampling from the population), we need to sample from a situation in
which our null hypothesis is true.

P-values from Randomization Distributions

Example 4.13

Testing one proportion.

1. H0: p = 0.5

Ha: p > 0.5

2. Test statistic: p̂ = 16/25 (the sample proportion)

3. We can simulate a world in which p = 0.5 using rflip():

Example4.13
Randomization.Match <- do(10000) * rflip(25, 0.5) # 25 because n=25

head(Randomization.Match)

n heads tails prop

1 25 13 12 0.52

2 25 9 16 0.36

3 25 14 11 0.56

4 25 11 14 0.44

5 25 14 11 0.56

6 25 14 11 0.56

histogram(˜prop, width = 0.04, data = Randomization.Match)

prop

D
en

si
ty

0

1

2

3

4

0.2 0.4 0.6 0.8

Here we find the proportion of the simulations which resulted in 16 or more matches out of 25, or 0.64
or greater, for the p-value.

Example4.13b
prop(˜(prop >= 0.64), data = Randomization.Match) # 16/25

TRUE

0.1144

histogram(˜prop, width = 0.04, groups = (prop >= 0.64), data = Randomization.Match)
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prop
D

en
si

ty

0

1

2

3

4

0.2 0.4 0.6 0.8

Example 4.15

Example4.15prop(˜(prop >= 0.6), data = Randomization.Match) # 15/25

TRUE

0.2175

prop(˜(prop >= 0.76), data = Randomization.Match) # 19/25

TRUE

0.0081

histogram(˜prop, width = 0.04, groups = (prop >= 0.6), data = Randomization.Match)

histogram(˜prop, width = 0.04, groups = (prop >= 0.76), data = Randomization.Match)
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Example 4.16

Example4.16prop(˜(prop >= 0.88), data = Randomization.Match) # 22/25

TRUE

0
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histogram(˜prop, width = 0.04, v = c(0.88), data = Randomization.Match)
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Figure 4.10

Figure4.10dotPlot(˜Taps | Group, layout = c(1, 2), width = 1, cex = 0.3, data = CaffeineTaps)
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Example 4.18

Testing two means.

Example4.18

mean(Taps ˜ Group, data = CaffeineTaps)

Caffeine No Caffeine

248.3 244.8

diff(mean(Taps ˜ Group, data = CaffeineTaps))

No Caffeine

-3.5

1. H0: µ1 = µ2

Ha: µ1 > µ2
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2. Test statistic: x̄1 − x̄2 = 3.5 (the difference in sample means)

3. We simulate a world in which µ1 = µ2 or µ1 −µ2 = 0:

Example4.18b
Randomization.Caff <- do(1000) * ediff(mean(Taps ˜ shuffle(Group), data = CaffeineTaps))

head(Randomization.Caff, 3)

V1 No.Caffeine

1 NA 2.1

2 NA 0.1

3 NA 3.7

dotPlot(˜No.Caffeine, width = 0.2, data = Randomization.Caff)
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Example4.18c
prop(˜(No.Caffeine >= 3.5), data = Randomization.Caff)

TRUE

0.001

dotPlot(˜No.Caffeine, width = 0.2, groups = (No.Caffeine >= 3.5), data = Randomization.Caff)
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P-values and the Alternative Hypothesis

Example 4.19

Testing one proportion.
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98 Hypothesis Tests

1. H0: p = 0.5

Ha: p > 0.5

2. Test statistic: p̂ = 0.8,0.6,0.4 (the sample proportion of 8/10, 6/10, 4/10 heads)

3. We simulate a world in which p = 0.5:

Example4.19
RandomizationDist <- do(1000) * rflip(10, 0.5) # 10 because n=10

head(RandomizationDist)

n heads tails prop

1 10 6 4 0.6

2 10 5 5 0.5

3 10 5 5 0.5

4 10 7 3 0.7

5 10 5 5 0.5

6 10 5 5 0.5

histogram(˜prop, label = TRUE, width = 1/10, data = RandomizationDist)

prop

D
en

si
ty

0.0

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.0

0.1
0.5

1.27

1.96
2.46

1.95

1.14

0.49
0.10.03

Example4.19b
prop(˜(prop >= 0.8), data = RandomizationDist)

TRUE

0.057

prop(˜(prop >= 0.6), data = RandomizationDist)

TRUE

0.356

prop(˜(prop >= 0.4), data = RandomizationDist)

TRUE

0.825

Example 4.20

Testing one proportion.
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1. H0: p = 0.5

Ha: p , 0.5

2. Test statistic: p̂ = 0.8 (the sample proportion of 8/10 heads)

3. We use the simulated world in which p = 0.5:

Example4.20
prop(˜ (prop >= 0.8), data = RandomizationDist)

TRUE

0.057

prop(˜ (prop <= 0.2), data = RandomizationDist)

TRUE

0.05

Example4.20b
# a 2-sided p-value is the sum of the values above

prop(˜(prop <= 0.2 | prop >= 0.8), data = RandomizationDist)

TRUE

0.107

# We can also approximate the p-value by doubling one side

2 * prop(˜prop >= 0.8, data = RandomizationDist)

TRUE

0.114

4.3 Determining Statisical Significance

Less Formal Statistical Decisions

Example 4.27

Testing two means.

Example4.27

head(Smiles)

Leniency Group

1 7.0 smile

2 3.0 smile

3 6.0 smile

4 4.5 smile

5 3.5 smile

6 4.0 smile

mean(Leniency ˜ Group, data = Smiles)
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100 Hypothesis Tests

neutral smile

4.118 4.912

diff(mean(Leniency ˜ Group, data = Smiles))

smile

0.7941

1. H0: µ1 = µ2

Ha: µ1 , µ2

2. Test statistic: x̄1 − x̄2 = 0.79 (the difference in sample means)

3. We simulate a world in which µ1 = µ2:

Example4.27b
Randomization.Smiles <- do(1000) * diff(mean(Leniency ˜ shuffle(Group), data = Smiles))

head(Randomization.Smiles, 3)

smile

1 0.29412

2 -0.05882

3 0.08824

Example4.27c

prop(˜ (smile <= -0.79 | smile >= 0.79), data = Randomization.Smiles)

TRUE

0.054

2 * prop(˜ smile >= 0.79, data = Randomization.Smiles )

TRUE

0.05

dotPlot(˜ smile, width = 0.03, cex = 0.5, groups = (smile >= 0.79),

xlab = "Diff", data = Randomization.Smiles)
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Now we find the p-value to test a difference of 0.76:
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Example4.27d

prop(˜(smile <= -0.76 | smile >= 0.76), data = Randomization.Smiles)

TRUE

0.062

2 * prop(˜smile >= 0.76, data = Randomization.Smiles)

TRUE

0.06

dotPlot(˜smile, width = 0.03, cex = 0.5, groups = (smile >= 0.76), data = Randomization.Smiles)
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4.4 Creating Randomization Distributions

In order to use these methods to estimate a p-value, we must be able to generate a randomization distribution.
In the case of a test with null hypothesis claiming that a proportion has a particular value (e.g, H0: p = 0.5),
this is pretty easy. If the population has proportion 0.50, we can simulate sampling from that proportion by
flipping a fair coin. If the proportion is some value other than 0.50, we simply flip a coin that has the appro-
priate probability of resulting in heads. So the general template for creating such a randomization distribution
is

do(1000) * rflip(n, hypothesized_proportion)

where n is the size of the original sample.

In other situations, it can be more challenging to create a randomization distribution because the null hypoth-
esis does not directly specify all of the information needed to simulate samples.

• H0: p1 = p2

This would be simple if we new the value of p1 and p2 (we could use rflip() twice, once for each group),

• H0: µ = some number

Just knowing the mean does not tell us enough about the distribution. We need to know about its shape.
(We might need to know the standard deviation, for example, or whether the distribution is skewed.)

• H0: µ1 , µ2 some number.

Now we don’t know the common mean and we don’t know the things mentioned in the previous example
either.

©2014 Last Modified: September 4, 2014



102 Hypothesis Tests

So how do we come up with randomization distribution?

The main criteria to consider when creating randomization samples for a statistical test are:
• Be consistent with the null hypothesis.

If we don’t do this, we won’t be testing our null hypothesis.

• Use the data in the original sample.

With luck, the original data will shed light on some aspects of the distribution that are not deter-
mined by null hypothesis.

• Reflect the way the original data were collected.

Randomization Test for a Difference in Proportions: Cocaine Addiction

Data 4.7

Data 4.7 in the text describes some data that are not in a data frame. This often happens when a data set has
only categorical variables because a simple table completely describes the distributions involved. Here’s the
table from the book:1

Relapse No Relapse

Lithium 18 6

Placebo 20 4

Here’s one way to create the data in R:

Section4.4b

Cocaine <- rbind(

do(18) * data.frame( treatment = "Lithium", response="Relapse"),

do(6) * data.frame( treatment = "Lithium", response="No Relapse"),

do(20) * data.frame( treatment = "Placebo", response="Relapse"),

do(4) * data.frame( treatment = "Placebo", response="No Relapse")

)

Example 4.29

Testing two proportions.

Example4.29

tally(response ˜ treatment, data = Cocaine)

treatment

response Lithium Placebo

Relapse 0.7500 0.8333

No Relapse 0.2500 0.1667

1The book includes data on an additional treatment group which we are omitting here.
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prop(response ˜ treatment, data = Cocaine)

Relapse.Lithium Relapse.Placebo

0.7500 0.8333

diff(prop(response ˜ treatment, data = Cocaine))

Relapse.Placebo

0.08333

1. H0: p1 = p2

Ha: p1 < p2

2. Test statistic: p̂1 = p̂2 (the difference in sample proportions)

3. We simulate a world in which p1 = p2 or p1 − p2 = 0:

Example4.29b
Randomization.Coc <- do(5000) * diff(prop(response ˜ shuffle(treatment), data = Cocaine))

head(Randomization.Coc)

Relapse.Placebo

1 0.00000

2 -0.16667

3 -0.08333

4 0.25000

5 -0.16667

6 0.00000

Example4.29c
prop(˜(Relapse.Placebo < -0.0833), data = Randomization.Coc)

TRUE

0.3546

histogram(˜Relapse.Placebo, data = Randomization.Coc, v = c(-0.0833), width = 0.08)

Relapse.Placebo
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3

−0.4 −0.2 0.0 0.2
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Randomization Test for a Correlation: Malevolent Uniforms and Penalties

Example 4.31

Testing correlation.

Example4.31

xyplot(ZPenYds ˜ NFL_Malevolence, type = c("p", "r"), data = MalevolentUniformsNFL)

cor(ZPenYds ˜ NFL_Malevolence, data = MalevolentUniformsNFL)

[1] 0.4298
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1. H0: ρ = 0

Ha: ρ > 0

2. Test statistic: r = 0.43 (the sample correlation)

3. We simulate a world in which ρ = 0:

Example4.31b
Randomization.Mal <- do(10000) * cor(NFL_Malevolence ˜ shuffle(ZPenYds),

data = MalevolentUniformsNFL)

head(Randomization.Mal)

result

1 0.004128

2 -0.154235

3 -0.194265

4 0.147729

5 -0.102568

6 -0.047919

Example4.32c
prop(˜(result > 0.43), data = Randomization.Mal)

TRUE

0.0121

histogram(˜result, v = c(0.43), width = 0.05, data = Randomization.Mal)
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Randomization Test for a Mean: Body Temperature

Example 4.33

Testing one mean.

Example4.33

mean(˜BodyTemp, data = BodyTemp50)

[1] 98.26

dotPlot(˜BodyTemp, v = c(98.26), width = 0.1, cex = 0.2, data = BodyTemp50)
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1. H0: µ = 98.6

Ha: µ , 98.6

2. Test statistic: x̄ = 98.26 (the sample mean)

Notice that the test statistic differs a bit from 98.6

Example4.33b
98.6 - mean(˜BodyTemp, data = BodyTemp50)

[1] 0.34

But might this just be random variation? We need a randomization distribution to compare against.
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3. If we resample, the mean will not be 98.6. But we shift the distribution a bit, then we will have the
desired mean while preserving the shape of the distribution indicated by our sample. We simulate a
world in which µ = 98.6:

Example4.33c
Randomization.Temp <- do(10000) * (mean(˜BodyTemp, data = resample(BodyTemp50)) + 0.34)

head(Randomization.Temp, 3)

result

1 98.61

2 98.52

3 98.61

mean(˜result, data = Randomization.Temp)

[1] 98.6

cdata(0.95, result, data = Randomization.Temp)

low hi central.p

98.39 98.81 0.95

From this we can estimate the p-value:

Example4.33d
prop(˜abs(result - 98.6) > 0.34, data = Randomization.Temp)

TRUE

0.0019

histogram(˜result, width = 0.01, v = c(98.4, 98.6, 98.81), data = Randomization.Temp)

result
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How do we interpret this (estimated) p-value of 0? Is it impossible to have a sample mean so far from 98.6
if the true population mean is 98.6? No. This merely means that we didn’t see any such cases in our 10000
randomization samples. We might estimate the p-value as p < 0.001. Generally, to more accurately estimate
small p-values, we must use many more randomization samples.
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Example 4.33: A different approach

An equivalent way to do the preceding test is based on a different way of expressing our hypotheses.

1. H0: µ− 98.6 = 0

Ha: µ− 98.6 , 0

2. Test statistic: x̄ − 98.6 = −0.34

3. We we create a randomization distribution centered at µ− 98.6 = 0:

Example4.33e
Randomization.Temp2 <- do(5000) * (mean(˜BodyTemp, data = resample(BodyTemp50)) - 98.26)

head(Randomization.Temp2, 3)

result

1 -0.194

2 0.050

3 -0.094

mean(˜result, data = Randomization.Temp2)

[1] -0.0006556

From this we can estimate the p-value:

Example4.33f,
prop(˜abs(result) > 0.34, data = Randomization.Temp2)

TRUE

0.001

histogram(˜result, width = 0.01, v = c(0.34, -0.34), data = Randomization.Temp2)

result
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Often there are multiple ways to express the same hypothesis test.
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4.5 Confidence Intervals and Hypothesis Tests

If your randomization distribution is centered at the wrong value, then it isn’t simulating a world in which
the null hypothesis is true. This would happen, for example, if we got confused about randomization vs.
bootstrapping.

Randomization and Bootstrap Distributions

Figure 4.32

Figure4.32Boot.Temp <- do(5000) * mean(˜BodyTemp, data = resample(BodyTemp50))

head(Boot.Temp, 3)

result

1 98.18

2 98.25

3 98.08

mean(˜result, data = Boot.Temp)

[1] 98.26

cdata(0.95, result, data = Boot.Temp)

low hi central.p

98.05 98.47 0.95

histogram(˜result, width = 0.01, v = c(98.26, 98.6), groups = (98.05 <= result & result <=

98.46), data = Boot.Temp)

result

D
en

si
ty

0

1

2

3

4

98.0 98.2 98.4 98.6

Notice that the distribution is now centered at our test statistic instead of at the value from the null hypothesis.
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Example 4.35

1. H0: µ = 98.4

Ha: µ , 98.4

2. Test statistic: x̄ = 98.26 (the sample mean)

3. We simulate a world in which µ = 98.4:

Example4.35
Randomization.Temp3 <- do(5000) * (mean(˜BodyTemp, data = resample(BodyTemp50)) + 0.14)

head(Randomization.Temp3, 3)

result

1 98.36

2 98.45

3 98.53

mean(˜result, data = Randomization.Temp3)

[1] 98.4

cdata(0.95, result, data = Randomization.Temp3)

low hi central.p

98.19 98.61 0.95

histogram(˜result, width = 0.01, v = c(98.26, 98.4), groups = (98.19 <= result & result <=

98.62), xlim = c(97.8, 99), data = Randomization.Temp3) # randomization

histogram(˜result, width = 0.01, v = c(98.26, 98.4), groups = (98.05 <= result & result <=

98.46), xlim = c(97.8, 99), data = Boot.Temp) # bootstrap

result
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result
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5
Approximating with a Distribution

5.1 Normal Distributions

Density Curves

Example 5.1

Example5.1Bootstrap <- do(1000) * mean(˜Time, data = resample(CommuteAtlanta))

head(Bootstrap, 3)

result

1 28.52

2 29.24

3 29.16

histogram(˜result, density = TRUE, data = Bootstrap)

densityplot(˜result, data = Bootstrap)
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Example5.1b

prop(˜(result <= 30), data = Bootstrap) # proportion less than 30 min
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TRUE

0.823

prop(˜(result >= 31), data = Bootstrap) # proportion greater than 31 min

TRUE

0.023

prop(˜(result >= 30 & result <= 31), data = Bootstrap) # proportion between 30 and 31 min

TRUE

0.155

Normal Distributions

Normal distributions

• are symmetric, unimodel, and bell-shaped

• can have any combination of mean and standard deviation (as long as the standard deviation is positive)

• satisfy the 68–95–99.7 rule:

Approximately 68% of any normal distribution lies within 1 standard deviation of the mean.

Approximately 95% of any normal distribution lies within 2 standard deviations of the mean.

Approximately 99.7% of any normal distribution lies within 3 standard deviations of the mean.

Many naturally occurring distributions are approximately normally distributed. Normal distributions are also
an important part of statistical inference.

Figure 5.5

Figure5.5plotFun(dnorm(x, 0, 1) ˜ x, x.lim = c(-5, 6))

plotFun(dnorm(x, 2, 1) ˜ x, add = TRUE, col = "red")
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Figure5.5b

plotFun(dnorm(x, 0, 0.5) ˜ x, x.lim = c(-5, 5))

plotFun(dnorm(x, 0, 1) ˜ x, add = TRUE, col = "red")

plotFun(dnorm(x, 0, 2) ˜ x, add = TRUE, col = "green")
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Example 5.2

Example5.2plotFun(dnorm(x, 75, 10) ˜ x, x.lim = c(40, 110))

plotFun(dnorm(x, 7.1, 1.1) ˜ x, x.lim = c(2.7, 11.5))

plotFun(dnorm(x, 0, 0.02) ˜ x, x.lim = c(-0.07, 0.07))
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Finding Normal Probabilities and Percentiles

The two main functions we need for working with normal distributions are pnorm() and qnorm(). pnorm()

computes the proportion of a normal distribution below a specified value:

pnorm(x,mean=µ, sd=σ) = Pr(X ≤ x)

when X ∼ Norm(µ,σ ).

We can obtain arbitrary probabilities using pnorm()

Example 5.3

Example5.3pnorm(90, 75, 10, lower.tail = FALSE) # proportion of scores above 90

[1] 0.06681

xpnorm(90, 75, 10, lower.tail = FALSE)
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If X ˜ N(75,10), then

P(X <= 90) = P(Z <= 1.5) = 0.9332

P(X > 90) = P(Z > 1.5) = 0.0668

[1] 0.06681
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ity

0.01
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0.03

0.04

0.05

40 60 80 100

90
(z=1.5)

0.9332  0.0668

The xpnorm() function gives a bit more verbose output and also gives you a picture. Notice the lower.tail=FALSE.
This is added because the default for pnorm() and xpnorm() finds the lower tail, not the upper tail. However,
we can also subtract the proportion of the lower tail from 1 to find the the proportion of the upper tail.

Example 5.4

qnorm() goes the other direction: You provide the quantile (percentile expressed as a decimal) and R gives you
the value.

Example5.4

qnorm(0.2, 75, 10) # 20th percentile in Norm(75, 10)

[1] 66.58

xqnorm(0.2, 75, 10)

P(X <= 66.5837876642709) = 0.2

P(X > 66.5837876642709) = 0.8

[1] 66.58

Last Modified: September 4, 2014 ©2014



Approximating with a Distribution 115
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(z=−0.842)

0.2  0.8

Standard Normal N(0,1)

Because probabilities in a normal distribution depend only on the number of standard deviations above and
below the mean, it is useful to define Z-scores (also called standardized scores) as follows:

Z-score =
value−mean

standard deviation

If we know the population mean and standard deviation, we can plug those in. When we do not, we will use
the mean and standard deviation of a random sample as an estimate.

Z-scores provide a second way to compute normal probabilities.

Example 5.5

Example5.5z30 <- (30 - 29.11) / 0.93; z30 # z-score for 30 min

[1] 0.957

z31 <- (31 - 29.11) / 0.93; z31 # z-score for 31 min

[1] 2.032

xpnorm(c(30, 31), 29.11, 0.93) # original normal distribution proportion between 30 and 31 min

If X ˜ N(29.11,0.93), then

P(X <= 30) = P(Z <= 0.957) = 0.8307

P(X <= 31) = P(Z <= 2.032) = 0.9789

P(X > 30) = P(Z > 0.957) = 0.1693

P(X > 31) = P(Z > 2.032) = 0.0211

[1] 0.8307 0.9789
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xpnorm(c(z30, z31)) # standardized distribution proportion between 30 and 31 min

If X ˜ N(0,1), then

P(X <= 0.956989247311829) = P(Z <= 0.957) = 0.8307

P(X <= 2.03225806451613) = P(Z <= 2.032) = 0.9789

P(X > 0.956989247311829) = P(Z > 0.957) = 0.1693

P(X > 2.03225806451613) = P(Z > 2.032) = 0.0211

[1] 0.8307 0.9789

pnorm(z31) - pnorm(z30)

[1] 0.1482
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Example5.5b

xpnorm(0.957) # proportion with z-score below 0.957
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If X ˜ N(0,1), then

P(X <= 0.957) = P(Z <= 0.957) = 0.8307

P(X > 0.957) = P(Z > 0.957) = 0.1693

[1] 0.8307

xpnorm(2.032, lower.tail = FALSE) # proportion with z-score above 2.032

If X ˜ N(0,1), then

P(X <= 2.032) = P(Z <= 2.032) = 0.9789

P(X > 2.032) = P(Z > 2.032) = 0.0211

[1] 0.02108

pnorm(30, 29.11, 0.93)

[1] 0.8307

pnorm(31, 29.11, 0.93, lower.tail = FALSE)

[1] 0.02106

de
ns

ity

0.1

0.2

0.3

0.4

0.5

−2 0 2

0.957
(z=0.957)

0.8307  0.1693
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de
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ity

0.1
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0.4

0.5

−2 0 2

2.032
(z=2.032)

0.9789  0.0211

Example 5.6

Example5.6z <- qnorm(0.2)

z

[1] -0.8416

75 + z * 10

[1] 66.58

5.2 Confidence Intervals and P-values Using Normal Distributions

Confidence Intervals Based on a Normal Distribution

Example 5.7

Example5.7Bootstrap <- do(1000) * mean(˜Time, data = resample(CommuteAtlanta))

dotPlot(˜result, width = 0.1, data = Bootstrap)
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Example5.7b

xqnorm(c(0.025, 0.975), 29.11, 0.915) # 95% confidence interval for the normal distribution

P(X <= 27.3166329541458) = 0.025

P(X <= 30.9033670458542) = 0.975

P(X > 27.3166329541458) = 0.975

P(X > 30.9033670458542) = 0.025

[1] 27.32 30.90
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Example5.7c

qnorm(0.005, 29.11, 0.915) # lower endpoint for 99% confidence interval

[1] 26.75

qnorm(0.995, 29.11, 0.915) # upper endpoint for 99% confidence interval

[1] 31.47

qnorm(0.05, 29.11, 0.915) # lower endpoint for 90% confidence interval

[1] 27.6

qnorm(0.95, 29.11, 0.915) # upper endpoint for 90% confidence interval

[1] 30.62
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Example 5.8

Example5.8qnorm(0.005, 13.1, 0.2) # lower endpoint for 99% confidence interval

[1] 12.58

qnorm(0.995, 13.1, 0.2) # upper endpoint for 99% confidence interval

[1] 13.62

P-values Based on a Normal Distribution

Example 5.9

Example5.9Randomization.Temp <- do(10000) * (mean(˜BodyTemp, data = resample(BodyTemp50)) + 0.34)

histogram(˜result, width = 0.025, fit = "normal", data = Randomization.Temp)

result
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Example5.9b

pnorm(98.26, 98.6, 0.1066)

[1] 0.0007126

2 * pnorm(98.26, 98.6, 0.1066)

[1] 0.001425

Example5.9c

z <- (98.26 - 98.6)/0.1066

z

[1] -3.189
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pnorm(z)

[1] 0.0007126

2 * pnorm(z)

[1] 0.001425

Example 5.10

Example5.10pnorm(0.66, 0.65, 0.013, lower.tail = FALSE)

[1] 0.2209

©2014 Last Modified: September 4, 2014



122 Approximating with a Distribution

Last Modified: September 4, 2014 ©2014



Inference for Means and Proportions 123

6
Inference for Means and Proportions

6.1 Distribution of a Sample Proportion

When sampling distributions, bootstrap distributions, and randomization distributions are well approximated
by normal distributions, and when we have a way of computing the standard error, we can use normal distri-
butions to compute confidence intervals and p-values using the following general templates:

• confidence interval:

statistic± critical value · SE

• hypothesis testing:

test statistic =
statistic−null parameter

SE

Example 6.1

Example6.1SE <- sqrt(0.25 * (1 - 0.25)/50)

SE

[1] 0.06124

SE <- sqrt(0.25 * (1 - 0.25)/200)

SE

[1] 0.03062

SE <- sqrt(0.4 * (1 - 0.4)/50)

SE

[1] 0.06928
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124 Inference for Means and Proportions

How Large a Sample Size is Needed?

Figure 6.2

Figure6.02P.05 <- do(2000) * rflip(50, 0.05)

dotPlot(˜prop, width = 0.02, cex = 25, data = P.05)

P.10 <- do(2000) * rflip(50, 0.1)

dotPlot(˜prop, width = 0.02, cex = 15, data = P.10)

P.25 <- do(2000) * rflip(50, 0.25)

dotPlot(˜prop, width = 0.02, cex = 10, data = P.25)

P.50 <- do(2000) * rflip(50, 0.5)

dotPlot(˜prop, width = 0.02, cex = 5, data = P.50)

P.90 <- do(2000) * rflip(50, 0.9)

dotPlot(˜prop, width = 0.02, cex = 10, data = P.90)

P.99 <- do(2000) * rflip(50, 0.99)

dotPlot(˜prop, width = 0.02, cex = 25, data = P.99)
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Figure 6.3

Figure6.03n10 <- do(2000) * rflip(10, 0.1)

dotPlot(˜prop, width = 0.1, cex = 25, data = n10)

n25 <- do(2000) * rflip(25, 0.1)

dotPlot(˜prop, width = 0.04, cex = 10, data = n25)

n200 <- do(2000) * rflip(200, 0.1)

dotPlot(˜prop, width = 0.005, cex = 5, data = n200)
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Example 6.2

Example6.2p.hat <- 0.80; p.hat

[1] 0.8

p.hat * 400 # check >= 10

[1] 320

(1 - p.hat) * 400 # check >= 10

[1] 80

SE <- sqrt( .80 * .20 / 400 ); SE

[1] 0.02

Figure 6.4

Figure6.4plotFun(dnorm(x, 0.8, 0.02) ˜ x, x.lim = c(0.72, 0.88))
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6.2 Confidence Interval for a Single Proportion

Confidence Interval for a Single Proportion

Example 6.3

Example6.3p.hat <- 52/100; p.hat
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[1] 0.52

SE <- sqrt( p.hat * (1 - p.hat) / 100 ); SE # est. SE

[1] 0.04996

p.hat - 1.96 * SE # lower end of CI

[1] 0.4221

p.hat + 1.96 * SE # upper end of CI

[1] 0.6179

R can automate finding the confidence interval. Notice the correct = FALSE in the second line. The default
for the proportion test includes a continuity correction for more accurate results. You can perform the test
without the correction for answers closer to the ones in the textbook.

Example6.3b

confint(prop.test(52, 100))

p lower upper level

0.5200 0.4183 0.6201 0.9500

confint(prop.test(52, 100, correct = FALSE))

p lower upper level

0.5200 0.4232 0.6154 0.9500

Example 6.4

Example6.4p.hat <- 0.28; p.hat

[1] 0.28

SE <- sqrt( p.hat * (1 - p.hat) / 800 ); SE # est. SE

[1] 0.01587

p.hat - 1.96 * SE # lower end of CI

[1] 0.2489

p.hat + 1.96 * SE # upper end of CI
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[1] 0.3111

confint(prop.test(224, 800)) # 224 = 0.28 * 800

p lower upper level

0.2800 0.2494 0.3128 0.9500

Example6.4b

p.hat <- 0.82; p.hat

[1] 0.82

SE <- sqrt( p.hat * (1 - p.hat) / 800 ); SE # est. SE

[1] 0.01358

p.hat - 1.96 * SE # lower end of CI

[1] 0.7934

p.hat + 1.96 * SE # upper end of CI

[1] 0.8466

confint(prop.test(656, 800)) # 656 = 0.82 * 800

p lower upper level

0.8200 0.7912 0.8457 0.9500

Determining Sample Size for Estimating a Proportion

Example 6.5

Example6.5z.star <- qnorm(0.995)

z.star # critical value for 99% confidence

[1] 2.576

p.hat <- 0.28

p.hat

[1] 0.28

n <- ((z.star/0.01)ˆ2) * p.hat * (1 - p.hat)

n
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[1] 13376

Example 6.6

Example6.6z.star <- qnorm(0.975)

z.star # critical value for 95% confidence

[1] 1.96

p.hat <- 0.5

p.hat

[1] 0.5

n <- ((z.star/0.03)ˆ2) * p.hat * (1 - p.hat)

n

[1] 1067

6.3 Test for a Single Proportion

Example 6.7

1. H0: p = 0.20

Ha: p < 0.20

2. Test statistic: p̂ = 0.19 (the sample approval rating)

3. Test for a single proportion:

Example6.7
p.hat <- 0.19

p.hat

[1] 0.19

p <- 0.2

p

[1] 0.2

p * 1013 # check >= 10

[1] 202.6

(1 - p) * 1013 # check >= 10

[1] 810.4
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SE <- sqrt(p * (1 - p)/1013)

SE

[1] 0.01257

z <- (p.hat - p)/SE

z

[1] -0.7957

pnorm(z)

[1] 0.2131

Again, R can automate the test for us.

Example6.7b
prop.test(192, 1013, alt = "less", p = 0.2) # 192 = 0.19 * 1013

1-sample proportions test with continuity correction

data: x and n

X-squared = 0.6294, df = 1, p-value = 0.2138

alternative hypothesis: true p is less than 0.2

95 percent confidence interval:

0.0000 0.2111

sample estimates:

p

0.1895

Notice the “less” for the alternative hypothesis because this is a lower tail alternative.

Example 6.8

Example6.8p.hat <- 66/119; p.hat

[1] 0.5546

p <- 1/3; p

[1] 0.3333

p * 119 # check >= 10

[1] 39.67

(1 - p) * 119 # check >= 10

[1] 79.33
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SE <- sqrt(p * (1 - p) / 119); SE

[1] 0.04321

z <- (p.hat - p) / SE; z

[1] 5.121

pnorm(z) # large side (rounded)

[1] 1

1 - pnorm(z) # small side (less rounding)

[1] 1.521e-07

2 * (1 - pnorm(z)) # p-value = 2 * small side

[1] 3.042e-07

prop.test(66, 119, p=1/3)

1-sample proportions test with continuity correction

data: x and n

X-squared = 25.24, df = 1, p-value = 5.072e-07

alternative hypothesis: true p is not equal to 0.3333

95 percent confidence interval:

0.4609 0.6448

sample estimates:

p

0.5546

Example 6.9

Example6.9p.hat <- 8/9

p.hat

[1] 0.8889

p <- 0.5

p

[1] 0.5

p * 9 # check >= 10
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[1] 4.5

Example6.9b

Randomization <- do(1000) * rflip(9, 0.5)

head(Randomization, 3)

n heads tails prop

1 9 6 3 0.6667

2 9 5 4 0.5556

3 9 6 3 0.6667

prop(˜(prop >= p.hat), data = Randomization)

TRUE

0.022

6.4 Distribution of a Sample Mean

Computing the Standard Error

Example 6.10

Example6.10SE <- 32000/sqrt(100)

SE

[1] 3200

SE <- 32000/sqrt(400)

SE

[1] 1600

How Large a Sample Size is Needed?

Figure 6.6

Figure6.06n1 <- do(100) * mean(˜Time, data = resample(CommuteAtlanta, 1))

histogram(˜result, data = n1)

n5 <- do(100) * mean(˜Time, data = resample(CommuteAtlanta, 5))

histogram(˜result, data = n5)

n15 <- do(100) * mean(˜Time, data = resample(CommuteAtlanta, 15))

histogram(˜result, data = n15)

n30 <- do(100) * mean(˜Time, data = resample(CommuteAtlanta, 30))

histogram(˜result, data = n30)
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n125 <- do(100) * mean(˜Time, data = resample(CommuteAtlanta, 125))

histogram(˜result, data = n125)

n500 <- do(100) * mean(˜Time, data = resample(CommuteAtlanta, 500))

histogram(˜result, data = n500)

result

D
en

si
ty

0.000
0.005
0.010
0.015
0.020
0.025

0 50 100 150 200

result

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

10 20 30 40 50 60

result

D
en

si
ty

0.00

0.02

0.04

0.06

0.08

20 25 30 35 40 45

result

D
en

si
ty

0.00
0.02
0.04
0.06
0.08
0.10
0.12

20 25 30 35 40

result

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

26 28 30 32 34 36

result

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

27 28 29 30 31 32

The t-Distribution

If we are working with one quantitative variable, we can compute confidence intervals and p-values using the
following standard error formula:

SE =
σ
√
n

Once again, there is a small problem: we won’t know σ . So we will estimate σ using our data:

SE ≈ s
√
n

Unfortunately, the distribution of
x −µ
s/
√
n

does not have a normal distribution. Instead the distribution is a bit “shorter and fatter” than the normal distri-
bution. The correct distribution is called the t-distribution with n−1 degrees of freedom. All t-distributions are
symmetric and centered at zero. The smaller the degrees of freedom, the shorter and fatter the t-distribution.

Example 6.11

Example6.11df <- 50 - 1

df

[1] 49

SE <- 10.5/sqrt(50)

SE

[1] 1.485
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Example6.11b

df <- 8 - 1

df

[1] 7

SE <- 1.25/sqrt(8)

SE

[1] 0.4419

Figure 6.8

Figure6.08plotFun(dnorm(x, 0, 1) ˜ x, x.lim = c(-4, 4), col = "black")

plotFun(dt(x, df = 15) ˜ x, add = TRUE, lty = 2)

plotFun(dt(x, df = 5) ˜ x, add = TRUE, lty = 3, col = "red")
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Example 6.12

Example6.12qt(0.975, df = 15)

[1] 2.131

pt(1.5, df = 15, lower.tail = FALSE)

[1] 0.07718

Similar to the normal distribution, the function for t-distribution is set to find probability of the lower tail.

Example6.12b

qnorm(0.975)
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[1] 1.96

pnorm(1.5, lower.tail = FALSE)

[1] 0.06681

Figure 6.9

Figure6.09plotFun(dt(x, df = 15) ˜ x, x.lim = c(-4, 4))

plotDist("t", params = list(df = 15), type = c("h", "l"), groups = (-2.131 < x & x < 2.131),

lty = 1)

ladd(grid.text("2.131", 2.1, 0.1, default.units = "native", hjust = 0))
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Figure6.09b

plotFun(dt(x, df = 15) ˜ x, x.lim = c(-4, 4))

plotDist("t", params = list(df = 15), type = c("h", "l"), groups = x > 1.5, lty = 1)

ladd(grid.text("1.5", 1.5, 0.2, default.units = "native", hjust = 0))

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

1.5

Last Modified: September 4, 2014 ©2014



Inference for Means and Proportions 135

6.5 Confidence Interval for a Mean Using the t-Distribution

Confidence Interval for a Mean Using the t-Distribution

Example 6.13

Example6.13head(Flight179, 3)

Date Flight179 Flight180 MDY

1 01/05/2010 368 308 2010-01-05

2 01/15/2010 370 292 2010-01-15

3 01/25/2010 354 290 2010-01-25

dotPlot(˜Flight179, cex = 0.5, data = Flight179) # to check for normality
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RStudio can do all of the calculations for you if you give it the raw data:

Example6.13b

favstats(˜Flight179, data = Flight179)

min Q1 median Q3 max mean sd n missing

330 341.5 358.5 370.2 407 357.9 20.18 36 0

t.test(˜Flight179, data = Flight179)

One Sample t-test

data: data$Flight179

t = 106.4, df = 35, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

351.0 364.7

sample estimates:

mean of x

357.9

You can also zoom in just the information you want:
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Example6.13c

confint(t.test(˜Flight179, data = Flight179))

mean of x lower upper level

357.86 351.03 364.69 0.95

Example 6.14

Example6.14head(CommuteAtlanta, 3)

City Age Distance Time Sex

1 Atlanta 19 10 15 M

2 Atlanta 55 45 60 M

3 Atlanta 48 12 45 M

densityplot(˜Time, data = CommuteAtlanta) # to check for normality
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Example6.14b

favstats(˜Time, data = CommuteAtlanta)

min Q1 median Q3 max mean sd n missing

1 15 25 40 181 29.11 20.72 500 0

confint(t.test(˜Time, conf.level = 0.99, data = CommuteAtlanta))

mean of x lower upper level

29.11 26.71 31.51 0.99

confint(t.test(˜Time, conf.level = 0.95, data = CommuteAtlanta))

mean of x lower upper level

29.11 27.29 30.93 0.95
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Example 6.15

Example6.15head(ManhattanApartments, 3)

Rent

1 2275

2 5495

3 2250

dotPlot(˜Rent, width = 200, cex = 0.3, data = ManhattanApartments) # to check for normality
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Example6.15b

Boot.Rent <- do(1000) * mean(˜Rent, data = resample(ManhattanApartments))

head(Boot.Rent, 3)

result

1 2492

2 2778

3 2833

favstats(˜result, data = Boot.Rent)

min Q1 median Q3 max mean sd n missing

2378 2937 3136 3361 4216 3162 303.8 1000 0

cdata(0.95, result, data = Boot.Rent)

low hi central.p

2642.23 3835.90 0.95

Determining Sample Size for Estimating a Mean

Example 6.16

Example6.16n <- (1.96 * 20.18/2)ˆ2

n
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[1] 391.1

6.6 Test for a Single Mean

Example 6.17

Example6.17head(BodyTemp50)

BodyTemp Pulse Gender Sex

1 97.6 69 0 Female

2 99.4 77 1 Male

3 99.0 75 0 Female

4 98.8 84 1 Male

5 98.0 71 0 Female

6 98.9 76 1 Male

dotPlot(˜BodyTemp, cex = 0.15, width = 0.1, data = BodyTemp50) # to check for normality
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Example6.17b

favstats(˜BodyTemp, data = BodyTemp50)

min Q1 median Q3 max mean sd n missing

96.4 97.8 98.2 98.8 100.8 98.26 0.7653 50 0

t.test(˜BodyTemp, mu = 98.6, data = BodyTemp50)

One Sample t-test

data: data$BodyTemp

t = -3.141, df = 49, p-value = 0.002851

alternative hypothesis: true mean is not equal to 98.6

95 percent confidence interval:

98.04 98.48

sample estimates:

mean of x

98.26
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pval(t.test(˜BodyTemp, mu = 98.6, data = BodyTemp50)) # to find the p-value directly

p.value

0.002851

Figure 6.17

Figure6.17plotFun(dt(x, df = 49) ˜ x, x.lim = c(-4, 4))

plotDist("t", params = list(df = 49), type = c("h", "l"), groups = (-3.14 < x & x < 3.14),

lty = 1)

ladd(grid.text("3.14", 3, 0.05, default.units = "native", hjust = 0))
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Example 6.18

Example6.18head(FloridaLakes, 3)

ID Lake Alkalinity pH Calcium Chlorophyll AvgMercury NumSamples MinMercury

1 1 Alligator 5.9 6.1 3.0 0.7 1.23 5 0.85

2 2 Annie 3.5 5.1 1.9 3.2 1.33 7 0.92

3 3 Apopka 116.0 9.1 44.1 128.3 0.04 6 0.04

MaxMercury ThreeYrStdMercury AgeData

1 1.43 1.53 1

2 1.90 1.33 0

3 0.06 0.04 0

densityplot(˜Alkalinity, data = FloridaLakes) # to check for normality
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Example6.18b

favstats(˜Alkalinity, data = FloridaLakes)

min Q1 median Q3 max mean sd n missing

1.2 6.6 19.6 66.5 128 37.53 38.2 53 0

t.test(˜Alkalinity, alt = "greater", mu = 35, data = FloridaLakes)

One Sample t-test

data: data$Alkalinity

t = 0.4822, df = 52, p-value = 0.3159

alternative hypothesis: true mean is greater than 35

95 percent confidence interval:

28.74 Inf

sample estimates:

mean of x

37.53

Notice the “greater” for the alternative hypothesis.

6.7 Distribution of Differences in Proportions

Example 6.19

Example6.19OneTrueLove <- read.file("OneTrueLove.csv")

head(OneTrueLove)

Gender Response

1 Male Agree

2 Male Agree

3 Male Agree

4 Male Agree

5 Male Agree

6 Male Agree
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tally(Response ˜ Gender, format = "count", margins = TRUE, data = OneTrueLove)

Gender

Response Female Male

Agree 363 372

Disagree 1005 807

Don't know 44 34

Total 1412 1213

prop(Response ˜ Gender, data = OneTrueLove)

Agree.Female Agree.Male

0.2571 0.3067

diff(prop(Response ˜ Gender, data = OneTrueLove))

Agree.Male

0.0496

Figure 6.20

Figure6.20Boot.Love <- do(5000) * diff(prop(Response ˜ Gender, data = resample(OneTrueLove)))

head(Boot.Love, 3)

Agree.Male

1 0.04922

2 0.02343

3 0.04922

histogram(˜Agree.Male, fit = "normal", data = Boot.Love)
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Example 6.20
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Example6.20SE <- sqrt(0.257 * (1 - 0.257)/1412 + 0.307 * (1 - 0.307)/1213)

SE

[1] 0.01762

6.8 Confidence Interval for a Difference in Proportions

Data 6.3

Data6.3success <- c(158, 109)

n <- c(444, 922)

Example 6.21

Example6.21success <- c(158, 109)

n <- c(444, 922)

prop.test(success, n, conf.level = 0.9)

2-sample test for equality of proportions with continuity correction

data: x and n

X-squared = 106.1, df = 1, p-value < 2.2e-16

alternative hypothesis: two.sided

90 percent confidence interval:

0.1947 0.2806

sample estimates:

prop 1 prop 2

0.3559 0.1182

6.9 Test For a Difference in Proportions

Data 6.4

Data6.4SplitSteal <- rbind(

do(187) * data.frame( agegroup = "Under40", decision = "Split"),

do(195) * data.frame( agegroup = "Under40", decision = "Steal"),

do(116) * data.frame( agegroup = "Over40", decision = "Split"),

do(76) * data.frame( agegroup = "Over40", decision = "Steal")

)
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Example 6.22

Example6.22prop(decision ˜ agegroup, data = SplitSteal) # sample prop within each group

Split.Under40 Split.Over40

0.4895 0.6042

prop(˜decision, data = SplitSteal) # pooled proportion

Split

0.5279

Example 6.23

Example6.23diff <- diff(prop(decision ˜ agegroup, data = SplitSteal))

diff

Split.Over40

0.1146

prop.test(decision ˜ agegroup, data = SplitSteal)

2-sample test for equality of proportions with continuity correction

data: t(table_from_formula)

X-squared = 6.286, df = 1, p-value = 0.01217

alternative hypothesis: two.sided

95 percent confidence interval:

-0.2040 -0.0253

sample estimates:

prop 1 prop 2

0.4895 0.6042

6.10 Distribution of Differences in Means

Figure 6.21

Figure6.21BootE <- do(2000) * diff(mean(Exercise ˜ Gender, data = resample(ExerciseHours)))

head(BootE, 3)

M

1 4.3167

2 3.7793

3 0.7435
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histogram(˜M, width = 0.5, fit = "normal", data = BootE)
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Figure6.21b

Random.Smiles <- do(2000) * diff(mean(Leniency ˜ shuffle(Group), data = Smiles))

head(Random.Smiles, 3)

smile

1 -0.08824

2 0.11765

3 0.44118

histogram(˜smile, n = 24, , fit = "normal", data = Random.Smiles)
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The t-Distribution

Example 6.24

Example6.24favstats(Exercise ˜ Gender, data = ExerciseHours)

.group min Q1 median Q3 max mean sd n missing

1 F 0 3 10 12.00 34 9.4 7.407 30 0

2 M 2 3 12 19.25 30 12.4 8.798 20 0
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SE <- sqrt(8.8ˆ2/20 + 7.41ˆ2/30)

SE

[1] 2.388

favstats(Leniency ˜ Group, data = Smiles)

.group min Q1 median Q3 max mean sd n missing

1 neutral 2.0 3.0 4.00 4.875 8 4.118 1.523 34 0

2 smile 2.5 3.5 4.75 5.875 9 4.912 1.681 34 0

SE <- sqrt(1.68ˆ2/34 + 1.52ˆ2/34)

SE

[1] 0.3885

6.11 Confidence Interval for a Difference in Means

Example 6.26

Example6.26head(CommuteStLouis)

City Age Distance Time Sex

1 St. Louis 52 10 20 M

2 St. Louis 21 35 40 F

3 St. Louis 23 40 45 F

4 St. Louis 38 0 2 M

5 St. Louis 26 15 25 M

6 St. Louis 46 7 12 M

favstats(˜Time, data = CommuteStLouis)

min Q1 median Q3 max mean sd n missing

1 11.5 20 30 130 21.97 14.23 500 0

favstats(˜Time, data = CommuteAtlanta)

min Q1 median Q3 max mean sd n missing

1 15 25 40 181 29.11 20.72 500 0

bwplot(˜Time, xlim = c(0, 200), data = CommuteAtlanta) # to check for normality

bwplot(˜Time, xlim = c(0, 200), data = CommuteStLouis) # to check for normality
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Example6.26b

confint(t.test(CommuteAtlanta$Time, CommuteStLouis$Time, conf.level = 0.9))

mean of x mean of y lower upper level

29.110 21.970 5.289 8.991 0.900

6.12 Test for a Difference in Means

Example 6.27

Example6.27head(Smiles, 3)

Leniency Group

1 7 smile

2 3 smile

3 6 smile

bwplot(Group ˜ Leniency, data = Smiles) # to check for normality

Leniency

neutral

smile

2 4 6 8

●

●

Example6.27b

t.test(Leniency ˜ Group, alt = "less", data = Smiles)
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Welch Two Sample t-test

data: Leniency by Group

t = -2.042, df = 65.37, p-value = 0.02262

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -0.1451

sample estimates:

mean in group neutral mean in group smile

4.118 4.912

6.13 Paired Difference in Means

Example 6.28

Example6.28head(Wetsuits, 3)

Wetsuit NoWetsuit Gender Type Sex

1 1.57 1.49 F swimmer Female

2 1.47 1.37 F triathlete Female

3 1.42 1.35 F swimmer Female

dotPlot(˜Wetsuit, xlim = c(1.1, 1.8), cex = 0.25, data = Wetsuits) # to check for normality

dotPlot(˜NoWetsuit, xlim = c(1.1, 1.8), cex = 0.25, data = Wetsuits) # to check for normality
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Example6.28b

t.test(Wetsuits$Wetsuit, Wetsuits$NoWetsuit)
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Welch Two Sample t-test

data: x and Wetsuits$NoWetsuit

t = 1.369, df = 21.97, p-value = 0.1849

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.03993 0.19493

sample estimates:

mean of x mean of y

1.507 1.429

Example 6.29

Example6.29head(Wetsuits, 3)

Wetsuit NoWetsuit Gender Type Sex

1 1.57 1.49 F swimmer Female

2 1.47 1.37 F triathlete Female

3 1.42 1.35 F swimmer Female

t.test(Wetsuits$Wetsuit, Wetsuits$NoWetsuit, paired = TRUE)

Paired t-test

data: x and Wetsuits$NoWetsuit

t = 12.32, df = 11, p-value = 8.885e-08

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.06365 0.09135

sample estimates:

mean of the differences

0.0775

dotPlot(Wetsuits$Wetsuit - Wetsuits$NoWetsuit, width = 0.01, cex = 0.3)
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Example 6.30
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Example6.30confint(t.test(Wetsuits$Wetsuit, Wetsuits$NoWetsuit, paired = TRUE))

mean of the differences lower upper

0.07750 0.06365 0.09135

level

0.95000

confint(t.test(˜(Wetsuit - NoWetsuit), data = Wetsuits))

mean of x lower upper level

0.07750 0.06365 0.09135 0.95000
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7
Chi-Squared Tests for Categorical Variables

Goodness of fit tests test how well a distribution fits some hypothesis.

7.1 Testing Goodness-of-Fit for a Single Categorical Variable

Example 7.1

Example7.1tally(˜Answer, format = "proportion", data = APMultipleChoice)

A B C D E

0.2125 0.2250 0.1975 0.1950 0.1700

Chi-square Statistic

The Chi-squared test statistic:

χ2 =
∑ (observed− expected)2

expected

There is one term in this sum for each cell in our data table, and
• observed = the tally in that cell (a count from our raw data)

• expected = the number we would “expect” if the percentages followed our null hypothesis ex-
actly. (Note: the expected counts might not be whole numbers.)

Example 7.5

You could calculate the chi-square statistic manually but of course, R can automate this whole process for us if
we provide the data table and the null hypothesis. Notice that to use chisq.test(), you must enter the data
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like answer <- c( 85, 90, 79, 78, 68). The default null hypothesis is that all the probabilities are equal.

Example7.5

head(APMultipleChoice)

Answer

1 B

2 B

3 D

4 A

5 E

6 D

answer <- c(85, 90, 79, 78, 68)

chisq.test(answer)

Chi-squared test for given probabilities

data: answer

X-squared = 3.425, df = 4, p-value = 0.4894

Chi-square Distribution

Figure 7.2

Figure7.02chisq.sample <- do(1000) * chisq.test(tally(˜resample(toupper(letters[1:5]), 400)))$statistic

histogram(˜X.squared, data = chisq.sample)
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Figure 7.3

Figure7.03plotDist("chisq", params = list(df = 4), type = c("h", "l"), groups = x > 3.425, lty = 1)

ladd(grid.text("3.425", 3.425, 0.175, default.units = "native", hjust = 0))
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Our test statistic will be large when the observed counts and expected counts are quite different. It will be
small when the observed counts and expected counts are quite close. So we will reject when the test statistic is
large. To know how large is large enough, we need to know the sampling distribution.

If H0 is true and the sample is large enough, then the sampling distribution for the Chi-squared test
statistic will be approximately a Chi-squared distribution.

• The degrees of freedom for this type of goodness of fit test is one less than the number of cells.

• The approximation gets better and better as the sample size gets larger.

The mean of a Chi-squared distribution is equal to its degrees of freedom. This can help us get a rough idea
about whether our test statistic is unusually large or not.

Example 7.6

1. H0: pw = 0.54, pb = 0.18, ph = 0.12, pa = 0.15, po = 0.01;

Ha: At least one pi is not as specified.

2. Observed count: w = 780, b = 117, h = 114, a = 384, o = 58

3. Chi-squared test:

Example7.6
jury <- c(780, 117, 114, 384, 58)

chisq.test(jury, p = c(0.54, 0.18, 0.12, 0.15, 0.01))

Chi-squared test for given probabilities

data: jury

X-squared = 357.4, df = 4, p-value < 2.2e-16

xchisq.test(jury, p = c(0.54, 0.18, 0.12, 0.15, 0.01)) # to list expected counts

Chi-squared test for given probabilities

data: jury
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X-squared = 357.4, df = 4, p-value < 2.2e-16

780.00 117.00 114.00 384.00 58.00

(784.62) (261.54) (174.36) (217.95) ( 14.53)

[ 0.027] [ 79.880] [ 20.895] [126.509] [130.051]

<-0.16> <-8.94> <-4.57> <11.25> <11.40>

key:

observed

(expected)

[contribution to X-squared]

<residual>

Notice in this example, we need to tell R what the null hypothesis is.

How unusual is it to get a test statistic at least as large as ours? We compare to a Chi-squared distribution
with 4 degrees of freedom. The mean value of such a statistic is 4, and our test statistic is much larger,
so we anticipate that our value is extremely unusual.

Goodness-of-Fit for Two Categories

When there are only two categories, the Chi-squared goodeness of fit test is equivalent to the 1-proportion
test. Notice that prop.test() uses the count in one category and total but that chisq.test() uses cell counts.

Example 7.8

Example7.8prop.test(84, 200)

1-sample proportions test with continuity correction

data: x and n

X-squared = 4.805, df = 1, p-value = 0.02838

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.3513 0.4918

sample estimates:

p

0.42

chisq.test(c(84, 116), p = c(0.5, 0.5))

Chi-squared test for given probabilities

data: c(84, 116)

X-squared = 5.12, df = 1, p-value = 0.02365

binom.test(84, 200)

Exact binomial test
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data: x and n

number of successes = 84, number of trials = 200, p-value = 0.02813

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.3507 0.4917

sample estimates:

probability of success

0.42

Although all three tests test the same hypotheses and give similar p-values (in this example), the binomial test
is generally used because

• The binomial test is exact for all sample sizes while the Chi-squared test and 1-proportion test are only
approximate, and the approximation is poor when sample sizes are small.

• The binomial test and 1-proportion test also produce confidence intervals.

7.2 Testing for an Association Between Two Categorical Variables

Example 7.9

Example7.9OneTrueLove <- read.file("OneTrueLove.csv")

tally(˜Response, format = "proportion", data = OneTrueLove)

Agree Disagree Don't know

0.28000 0.69029 0.02971

tally(˜Response + Gender, format = "proportion", margin = TRUE, data = OneTrueLove)

Gender

Response Female Male Total

Agree 0.13829 0.14171 0.28000

Disagree 0.38286 0.30743 0.69029

Don't know 0.01676 0.01295 0.02971

Total 0.53790 0.46210 1.00000

Figure 7.4

Figure7.04bargraph(˜Response | Gender, type = "count", data = OneTrueLove)
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Chi-square Test for Association

Example 7.10

Example7.10head(WaterTaste, 3)

Gender Age Class UsuallyDrink FavBotWatBrand Preference First Second Third

1 F 18 F Filtered DEER PARK CABD Fiji SamsChoice Aquafina

2 F 18 F Tap NONE CABD Fiji SamsChoice Aquafina

3 F 18 F Tap DEER PARK CADB Fiji SamsChoice Tap

Fourth Sex

1 Tap Female

2 Tap Female

3 Aquafina Female

water <- tally(˜UsuallyDrink + First, data = WaterTaste)

water

First

UsuallyDrink Aquafina Fiji SamsChoice Tap

Bottled 14 15 8 4

Filtered 4 10 9 3

Tap 7 16 7 3

Example7.10b

water <- rbind(c(14, 15, 8, 4), c(11, 26, 16, 6)) # to combine Tap and Filtered

water

[,1] [,2] [,3] [,4]

[1,] 14 15 8 4

[2,] 11 26 16 6

colnames(water) <- c("Aquafina", "Fiji", "SamsChoice", "Tap") # add column names

rownames(water) <- c("Bottled", "Tap/Filtered") # add row names

water

Aquafina Fiji SamsChoice Tap
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Bottled 14 15 8 4

Tap/Filtered 11 26 16 6

Example7.10c

xchisq.test(water)

Pearson's Chi-squared test

data: water

X-squared = 3.243, df = 3, p-value = 0.3557

14.00 15.00 8.00 4.00

(10.25) (16.81) ( 9.84) ( 4.10)

[1.3720] [0.1949] [0.3441] [0.0024]

< 1.171> <-0.441> <-0.587> <-0.049>

11.00 26.00 16.00 6.00

(14.75) (24.19) (14.16) ( 5.90)

[0.9534] [0.1354] [0.2391] [0.0017]

<-0.976> < 0.368> < 0.489> < 0.041>

key:

observed

(expected)

[contribution to X-squared]

<residual>

Special Case for a 2 x 2 Table

There is also an exact test that works only in the case of a 2× 2 table (much like the binomial test can be used
instead of a goodness of fit test if there are only two categories). The test is called Fisher’s Exact Test.

In this case we see that the simulated p-value from the Chi-squared Test is nearly the same as the exact p-value
from Fisher’s Exact Test. This is because Fisher’s test is using mathematical formulas to compute probabilities
of all randomizations – it is essentially the same as doing infinitely many randomizations!

Note: For a 2 × 2 table, we could also use the method of 2-proportions (prop.test(), manual resampling,
or formula-based). The approximations based on the normal distribution will be poor in the same situations
where the Chi-squared test gives a poor approximation.

Example 7.11

Example7.11SplitStealTable <- rbind(c(187, 195), c(116, 76))

SplitStealTable

[,1] [,2]

[1,] 187 195

[2,] 116 76

colnames(SplitStealTable) <- c("Split", "Steal")
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rownames(SplitStealTable) <- c("Younger", "Older")

SplitStealTable

Split Steal

Younger 187 195

Older 116 76

Example7.11b

fisher.test(SplitStealTable)

Fisher's Exact Test for Count Data

data: SplitStealTable

p-value = 0.01023

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.4346 0.9066

sample estimates:

odds ratio

0.6288

xchisq.test(SplitStealTable)

Pearson's Chi-squared test with Yates' continuity correction

data: SplitStealTable

X-squared = 6.286, df = 1, p-value = 0.01217

187.00 195.00

(201.65) (180.35)

[1.06] [1.19]

<-1.03> < 1.09>

116.00 76.00

(101.35) ( 90.65)

[2.12] [2.37]

< 1.46> <-1.54>

key:

observed

(expected)

[contribution to X-squared]

<residual>

To use the test for proportions as done in Example 6.23,

Example7.11c

SplitStealData <- rbind(

do(187) * data.frame( agegroup = "Under40", decision="Split"),

do(195) * data.frame( agegroup = "Under40", decision="Steal"),

do(116) * data.frame( agegroup = "Over40", decision="Split"),

do(76) * data.frame( agegroup = "Over40", decision="Steal")

)
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Example7.11d

prop.test(decision ˜ agegroup, data = SplitStealData)

2-sample test for equality of proportions with continuity correction

data: t(table_from_formula)

X-squared = 6.286, df = 1, p-value = 0.01217

alternative hypothesis: two.sided

95 percent confidence interval:

-0.2040 -0.0253

sample estimates:

prop 1 prop 2

0.4895 0.6042
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8
ANOVA to Compare Means

8.1 Analysis of Variance

• Two variables: categorical explanatory and quantitative response

– Can be used in either experimental or observational designs.

• Main Question: Does the population mean response depend on the (treatment) group?

– H0: the population group means are all the equal (µ1 = µ2 = · · ·µk)
– Ha: the population group means are not all equal

• If categorical variable has only 2 values, we already have a method: 2-sample t-test

– ANOVA allows for 3 or more groups (sub-populations)

• F statistic compares within group variation (how different are individuals in the same group?) to between
group variation (how different are the different group means?)

• ANOVA assumes that each group is normally distributed with the same (population) standard deviation.

– Check normality with normal quantile plots (of residuals)

– Check equal standard deviation using 2:1 ratio rule (largest standard deviation at most twice the
smallest standard deviation).

Null and Alternative Hypotheses

Example 8.1

Example8.1favstats(Ants ˜ Filling, data = SandwichAnts)

.group min Q1 median Q3 max mean sd n missing

1 Ham & Pickles 34 42.00 51.0 55.25 65 49.25 10.794 8 0

2 Peanut Butter 19 21.75 30.5 44.00 59 34.00 14.629 8 0

3 Vegemite 18 24.00 30.0 39.00 42 30.75 9.254 8 0
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Example8.1b

xyplot(Ants ˜ Filling, SandwichAnts, type = c("p", "a"))

bwplot(Ants ˜ Filling, SandwichAnts)
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Partitioning Variability

Example 8.3

Example8.3Ants.Model <- lm(Ants ˜ Filling, data = SandwichAnts)

anova(Ants.Model)

Analysis of Variance Table

Response: Ants

Df Sum Sq Mean Sq F value Pr(>F)

Filling 2 1561 780 5.63 0.011 *

Residuals 21 2913 139

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value listed in this output is the p-value for our null hypothesis that the mean population response is
the same in each treatment group. In this case we would reject the null hypothesis at the α = 0.05 level.

In the next section we’ll look at this test in more detail, but notice that if you know the assumptions of a test,
the null hypothesis being tested, and the p-value, you can generally interpret the results even if you don’t
know all the details of how the test statistic is computed.

The F-Statistic

The ANOVA test statistic (called F) is based on three ingredients:

1. how different the group means are (between group differences)

2. the amount of variability within each group (within group differences)

3. sample size

Each of these will be involved in the calculation of F.
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Figure 8.3

Figure8.3Rand.Ants <- do(1000) * anova(lm(Ants ˜ shuffle(Filling), data = SandwichAnts))

tally(˜(F >= 5.63), data = Rand.Ants)

TRUE FALSE <NA>

15 985 1000

prop(˜(F >= 5.63), data = Rand.Ants)

TRUE

0.0075

dotPlot(˜F, width = 0.2, groups = (F <= 5.63), data = Rand.Ants)
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The F-distribution

Under certain conditions, the F statistic has a known distribution (called the F distribution). Those conditions
are

1. The null hypothesis is true (i.e., each group has the same mean)

2. Each group is sampled from a normal population

3. Each population group has the same standard deviation

When these conditions are met, we can use the F-distribution to compute the p-value without generating the
randomization distribution.

• F distributions have two parameters – the degrees of freedom for the numerator and for the denominator.

In our example, this is 2 for the numerator and 7 for the denominator.
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• When H0 is true, the numerator and denominator both have a mean of 1, so F will tend to be close to 1.

• When H0 is false, there is more difference between the groups, so the numerator tends to be larger.

This means we will reject the null hypothesis when F gets large enough.

• The p-value is computed using pf().

Figure 8.4

Figure8.4histogram(˜F, width = 4/7, center = 0.25, data = Rand.Ants)

plotDist("f", df1 = 2, df2 = 21, add = TRUE)
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More Examples of ANOVA

Example 8.5

Example8.5head(StudentSurvey, 3)

Year Gender Smoke Award HigherSAT Exercise TV Height Weight Siblings BirthOrder

1 Senior M No Olympic Math 10 1 71 180 4 4

2 Sophomore F Yes Academy Math 4 7 66 120 2 2

3 FirstYear M No Nobel Math 14 5 72 208 2 1

VerbalSAT MathSAT SAT GPA Pulse Piercings Sex

1 540 670 1210 3.13 54 0 Male

2 520 630 1150 2.50 66 3 Female

3 550 560 1110 2.55 130 0 Male

favstats(˜Pulse, data = StudentSurvey)

min Q1 median Q3 max mean sd n missing

35 62 70 77.75 130 69.57 12.21 362 0

favstats(Pulse ˜ Award, data = StudentSurvey)
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.group min Q1 median Q3 max mean sd n missing

1 Academy 42 64.5 71 76 95 70.52 12.36 31 0

2 Nobel 40 65.0 72 80 130 72.21 13.09 149 0

3 Olympic 35 60.0 68 74 96 67.25 10.97 182 0

anova(lm(Pulse ˜ Award, StudentSurvey))

Analysis of Variance Table

Response: Pulse

Df Sum Sq Mean Sq F value Pr(>F)

Award 2 2047 1024 7.1 0.00094 ***

Residuals 359 51729 144

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 8.5

Figure8.5bwplot(Award ˜ Pulse, data = StudentSurvey)
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ANOVA Calculations

• Between group variability: G = groupMean− grandMean
This measures how different a group is from the overall average.

• Within group variability: E = response− groupMean
This measures how different and individual is from its group average. E stands for “error”, but just as in
“standard error” it is not a “mistake”. It is simply measure how different an individual response is from
the model prediction (in this case, the group mean).

The individual values of E are called residuals.

Example 8.6

Let’s first compute the grand mean and group means.
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Example8.6

SandwichAnts

Butter Filling Bread Ants Order

1 no Vegemite Rye 18 10

2 no Peanut Butter Rye 43 26

3 no Ham & Pickles Rye 44 39

4 no Vegemite Wholemeal 29 25

5 no Peanut Butter Wholemeal 59 35

6 no Ham & Pickles Wholemeal 34 1

7 no Vegemite Multigrain 42 44

8 no Peanut Butter Multigrain 22 36

9 no Ham & Pickles Multigrain 36 32

10 no Vegemite White 42 33

11 no Peanut Butter White 25 34

12 no Ham & Pickles White 49 13

13 no Vegemite Rye 31 14

14 no Peanut Butter Rye 36 31

15 no Ham & Pickles Rye 54 20

16 no Vegemite Wholemeal 21 19

17 no Peanut Butter Wholemeal 47 38

18 no Ham & Pickles Wholemeal 65 5

19 no Vegemite Multigrain 38 21

20 no Peanut Butter Multigrain 19 22

21 no Ham & Pickles Multigrain 59 8

22 no Vegemite White 25 41

23 no Peanut Butter White 21 16

24 no Ham & Pickles White 53 23

mean(Ants, data = SandwichAnts) # grand mean

[1] 38

mean(Ants ˜ Filling, data = SandwichAnts) # group means

Ham & Pickles Peanut Butter Vegemite

49.25 34.00 30.75

And add those to our data frame

Example8.6b

SA <- transform(SandwichAnts, groupMean = c(30.75, 34, 49.25, 30.75, 34, 49.25, 30.75, 34,

49.25, 30.75, 34, 49.25, 30.75, 34, 49.25, 30.75, 34, 49.25, 30.75, 34, 49.25, 30.75, 34,

49.25))

SA <- transform(SA, grandMean = rep(38, 24))

SA

Butter Filling Bread Ants Order groupMean grandMean

1 no Vegemite Rye 18 10 30.75 38

2 no Peanut Butter Rye 43 26 34.00 38

3 no Ham & Pickles Rye 44 39 49.25 38

4 no Vegemite Wholemeal 29 25 30.75 38

5 no Peanut Butter Wholemeal 59 35 34.00 38

6 no Ham & Pickles Wholemeal 34 1 49.25 38
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7 no Vegemite Multigrain 42 44 30.75 38

8 no Peanut Butter Multigrain 22 36 34.00 38

9 no Ham & Pickles Multigrain 36 32 49.25 38

10 no Vegemite White 42 33 30.75 38

11 no Peanut Butter White 25 34 34.00 38

12 no Ham & Pickles White 49 13 49.25 38

13 no Vegemite Rye 31 14 30.75 38

14 no Peanut Butter Rye 36 31 34.00 38

15 no Ham & Pickles Rye 54 20 49.25 38

16 no Vegemite Wholemeal 21 19 30.75 38

17 no Peanut Butter Wholemeal 47 38 34.00 38

18 no Ham & Pickles Wholemeal 65 5 49.25 38

19 no Vegemite Multigrain 38 21 30.75 38

20 no Peanut Butter Multigrain 19 22 34.00 38

21 no Ham & Pickles Multigrain 59 8 49.25 38

22 no Vegemite White 25 41 30.75 38

23 no Peanut Butter White 21 16 34.00 38

24 no Ham & Pickles White 53 23 49.25 38

Example8.6c

SA <- transform(SA, M = groupMean - grandMean)

SA <- transform(SA, E = Ants - groupMean)

SA

Butter Filling Bread Ants Order groupMean grandMean M E

1 no Vegemite Rye 18 10 30.75 38 -7.25 -12.75

2 no Peanut Butter Rye 43 26 34.00 38 -4.00 9.00

3 no Ham & Pickles Rye 44 39 49.25 38 11.25 -5.25

4 no Vegemite Wholemeal 29 25 30.75 38 -7.25 -1.75

5 no Peanut Butter Wholemeal 59 35 34.00 38 -4.00 25.00

6 no Ham & Pickles Wholemeal 34 1 49.25 38 11.25 -15.25

7 no Vegemite Multigrain 42 44 30.75 38 -7.25 11.25

8 no Peanut Butter Multigrain 22 36 34.00 38 -4.00 -12.00

9 no Ham & Pickles Multigrain 36 32 49.25 38 11.25 -13.25

10 no Vegemite White 42 33 30.75 38 -7.25 11.25

11 no Peanut Butter White 25 34 34.00 38 -4.00 -9.00

12 no Ham & Pickles White 49 13 49.25 38 11.25 -0.25

13 no Vegemite Rye 31 14 30.75 38 -7.25 0.25

14 no Peanut Butter Rye 36 31 34.00 38 -4.00 2.00

15 no Ham & Pickles Rye 54 20 49.25 38 11.25 4.75

16 no Vegemite Wholemeal 21 19 30.75 38 -7.25 -9.75

17 no Peanut Butter Wholemeal 47 38 34.00 38 -4.00 13.00

18 no Ham & Pickles Wholemeal 65 5 49.25 38 11.25 15.75

19 no Vegemite Multigrain 38 21 30.75 38 -7.25 7.25

20 no Peanut Butter Multigrain 19 22 34.00 38 -4.00 -15.00

21 no Ham & Pickles Multigrain 59 8 49.25 38 11.25 9.75

22 no Vegemite White 25 41 30.75 38 -7.25 -5.75

23 no Peanut Butter White 21 16 34.00 38 -4.00 -13.00

24 no Ham & Pickles White 53 23 49.25 38 11.25 3.75

As we did with variance, we will square these differences:

Example8.6d

SA <- transform(SA, M2 = (groupMean - grandMean)ˆ2)

SA <- transform(SA, E2 = (Ants - groupMean)ˆ2)

SA
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Butter Filling Bread Ants Order groupMean grandMean M E M2

1 no Vegemite Rye 18 10 30.75 38 -7.25 -12.75 52.56

2 no Peanut Butter Rye 43 26 34.00 38 -4.00 9.00 16.00

3 no Ham & Pickles Rye 44 39 49.25 38 11.25 -5.25 126.56

4 no Vegemite Wholemeal 29 25 30.75 38 -7.25 -1.75 52.56

5 no Peanut Butter Wholemeal 59 35 34.00 38 -4.00 25.00 16.00

6 no Ham & Pickles Wholemeal 34 1 49.25 38 11.25 -15.25 126.56

7 no Vegemite Multigrain 42 44 30.75 38 -7.25 11.25 52.56

8 no Peanut Butter Multigrain 22 36 34.00 38 -4.00 -12.00 16.00

9 no Ham & Pickles Multigrain 36 32 49.25 38 11.25 -13.25 126.56

10 no Vegemite White 42 33 30.75 38 -7.25 11.25 52.56

11 no Peanut Butter White 25 34 34.00 38 -4.00 -9.00 16.00

12 no Ham & Pickles White 49 13 49.25 38 11.25 -0.25 126.56

13 no Vegemite Rye 31 14 30.75 38 -7.25 0.25 52.56

14 no Peanut Butter Rye 36 31 34.00 38 -4.00 2.00 16.00

15 no Ham & Pickles Rye 54 20 49.25 38 11.25 4.75 126.56

16 no Vegemite Wholemeal 21 19 30.75 38 -7.25 -9.75 52.56

17 no Peanut Butter Wholemeal 47 38 34.00 38 -4.00 13.00 16.00

18 no Ham & Pickles Wholemeal 65 5 49.25 38 11.25 15.75 126.56

19 no Vegemite Multigrain 38 21 30.75 38 -7.25 7.25 52.56

20 no Peanut Butter Multigrain 19 22 34.00 38 -4.00 -15.00 16.00

21 no Ham & Pickles Multigrain 59 8 49.25 38 11.25 9.75 126.56

22 no Vegemite White 25 41 30.75 38 -7.25 -5.75 52.56

23 no Peanut Butter White 21 16 34.00 38 -4.00 -13.00 16.00

24 no Ham & Pickles White 53 23 49.25 38 11.25 3.75 126.56

E2

1 162.5625

2 81.0000

3 27.5625

4 3.0625

5 625.0000

6 232.5625

7 126.5625

8 144.0000

9 175.5625

10 126.5625

11 81.0000

12 0.0625

13 0.0625

14 4.0000

15 22.5625

16 95.0625

17 169.0000

18 248.0625

19 52.5625

20 225.0000

21 95.0625

22 33.0625

23 169.0000

24 14.0625

And then add them up (SS stands for “sum of squares”)

Example8.6e

SST <- sum(˜((Ants - grandMean)ˆ2), data = SA)

SST

[1] 4474
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SSM <- sum(˜M2, data = SA)

SSM # also called SSG

[1] 1561

SSE <- sum(˜E2, data = SA)

SSE

[1] 2913

8.2 Pairwise Comparisons and Inference After ANOVA

Using ANOVA for Inferences about Group Means

We can construct a confidence interval for any of the means by just taking a subset of the data and using
t.test(), but there are some problems with this approach. Most importantly,

We were primarily interested in comparing the means across the groups. Often people will display
confidence intervals for each group and look for “overlapping” intervals. But this is not the best
way to look for differences.

Nevertheless, you will sometimes see graphs showing multiple confidence intervals and labeling them to in-
dicate which means appear to be different from which. (See the solution to problem 15.3 for an example.)

Example 8.7

Example8.7anova(Ants.Model)

Analysis of Variance Table

Response: Ants

Df Sum Sq Mean Sq F value Pr(>F)

Filling 2 1561 780 5.63 0.011 *

Residuals 21 2913 139

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

MSE <- 138.7

mean(Ants ˜ Filling, data = SandwichAnts)

Ham & Pickles Peanut Butter Vegemite

49.25 34.00 30.75

mean <- 34

t.star <- qt(0.975, df = 21)

t.star
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[1] 2.08

mean - t.star * (sqrt(MSE)/sqrt(8))

[1] 25.34

mean + t.star * (sqrt(MSE)/sqrt(8))

[1] 42.66

Example8.7b

TukeyHSD(Ants.Model)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = x)

$Filling

diff lwr upr p adj

Peanut Butter-Ham & Pickles -15.25 -30.09 -0.4067 0.0433

Vegemite-Ham & Pickles -18.50 -33.34 -3.6567 0.0131

Vegemite-Peanut Butter -3.25 -18.09 11.5933 0.8466

plot(TukeyHSD(Ants.Model))
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95% family−wise confidence level

Differences in mean levels of Filling

Example 8.8

Example8.8MSE <- 138.7

mean(Ants ˜ Filling, data = SandwichAnts)
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Ham & Pickles Peanut Butter Vegemite

49.25 34.00 30.75

diff.mean <- (30.75 - 49.25)

t.star <- qt(0.975, df = 21)

t.star

[1] 2.08

Example8.8b

diff.mean - t.star * (sqrt(MSE * (1/8 + 1/8)))

[1] -30.75

diff.mean + t.star * (sqrt(MSE * (1/8 + 1/8)))

[1] -6.254

Example 8.9

Example8.9MSE <- 138.7

mean(Ants ˜ Filling, data = SandwichAnts)

Ham & Pickles Peanut Butter Vegemite

49.25 34.00 30.75

diff.mean <- (30.75 - 34)

Example8.9b

t <- diff.mean/sqrt(MSE * (1/8 + 1/8))

t

[1] -0.5519

pt(t, df = 21) * 2

[1] 0.5868

Lots of Pairwise Comparisons

Example 8.10
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Example8.10head(TextbookCosts)

Field Books Cost

1 SocialScience 3 77

2 NaturalScience 2 231

3 NaturalScience 1 189

4 SocialScience 6 85

5 NaturalScience 1 113

6 Humanities 9 132

Books.Model <- lm(Cost ˜ Field, data = TextbookCosts)

anova(Books.Model)

Analysis of Variance Table

Response: Cost

Df Sum Sq Mean Sq F value Pr(>F)

Field 3 30848 10283 4.05 0.014 *

Residuals 36 91294 2536

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(Books.Model)

Call:

lm(formula = Cost ˜ Field, data = TextbookCosts)

Residuals:

Min 1Q Median 3Q Max

-77.60 -35.30 -4.95 36.90 102.70

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 94.6 15.9 5.94 8.3e-07 ***

FieldHumanities 25.7 22.5 1.14 0.2613

FieldNaturalScience 76.2 22.5 3.38 0.0017 **

FieldSocialScience 23.7 22.5 1.05 0.2996

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 50.4 on 36 degrees of freedom

Multiple R-squared: 0.253,Adjusted R-squared: 0.19

F-statistic: 4.05 on 3 and 36 DF, p-value: 0.014

Example8.10b

TukeyHSD(Books.Model)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = x)
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$Field

diff lwr upr p adj

Humanities-Arts 25.7 -34.95 86.354 0.6669

NaturalScience-Arts 76.2 15.55 136.854 0.0090

SocialScience-Arts 23.7 -36.95 84.354 0.7201

NaturalScience-Humanities 50.5 -10.15 111.154 0.1312

SocialScience-Humanities -2.0 -62.65 58.654 0.9997

SocialScience-NaturalScience -52.5 -113.15 8.154 0.1098

Figure 8.8

Figure8.8bwplot(Field ˜ Cost, data = TextbookCosts)

Cost

Arts

Humanities

NaturalScience

SocialScience

50 100 150 200 250

●

●

●

●

●

©2014 Last Modified: September 4, 2014



174 ANOVA to Compare Means

Last Modified: September 4, 2014 ©2014



Inference for Regression 175

9
Inference for Regression

9.1 Inference for Slope and Correlation

Simple Linear Model

Y = β0 + β1x+ ε where ε ∼ Norm(0,σ ).

In other words:

• The mean response for a given predictor value x is given by a linear formula

mean response = β0 + β1x

• The distribution of all responses for a given predictor value x is normal.

• The standard deviation of the responses is the same for each predictor value.

One of the goals in simple linear regression is to estimate this linear relationship – that is to estimate the
intercept and the slope.

Of course, there are lots of lines. We want to determine the line that fits the data best. But what does that
mean?

The usual method is called the method of least squares and chooses the line that has the smallest possible sum
of squares of residuals, where residuals are defined by

residual = observed response−predicted response

For a line with equation y = b0 + b1x, this would be

ei = yi − (b0 + b1x)

Simple calculus (that you don’t need to know) allows us to compute the best b0 and b1 possible. These best
values define the least squares regression line. Fortunately, statistical software packages do all this work for
us. In R, the command that does this is lm().
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Example 9.1

Example9.1lm(Price ˜ PPM, data = InkjetPrinters)

Call:

lm(formula = Price ˜ PPM, data = InkjetPrinters)

Coefficients:

(Intercept) PPM

-94.2 90.9

You can get terser output with

Example9.1b

coef(lm(Price ˜ PPM, data = InkjetPrinters))

(Intercept) PPM

-94.22 90.88

You can also get more information with

Example9.1c

summary(lm(Price ˜ PPM, data = InkjetPrinters))

Call:

lm(formula = Price ˜ PPM, data = InkjetPrinters)

Residuals:

Min 1Q Median 3Q Max

-79.38 -51.40 -3.49 43.85 87.76

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -94.2 56.4 -1.67 0.11209

PPM 90.9 19.5 4.66 0.00019 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 58.5 on 18 degrees of freedom

Multiple R-squared: 0.547,Adjusted R-squared: 0.522

F-statistic: 21.7 on 1 and 18 DF, p-value: 0.000193

So our regression equation is

�Price = −94.2218 + 90.8781 ·PPM

For example, this suggests that the average price for inkjet printers that print 3 pages per minute is

�Price = −94.2218 + 90.8781 · 3.0 = 178.4124
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Inference for Slope

Figure 9.1

Figure9.1xyplot(Price ˜ PPM, data = InkjetPrinters, type = c("p", "r"))
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Figure 9.2

Figure9.2Boot.Ink <- do(1000) * lm(Price ˜ PPM, data = resample(InkjetPrinters))

favstats(˜PPM, data = Boot.Ink)

min Q1 median Q3 max mean sd n missing

18.7 78.48 92.51 106.1 154.6 91.81 20.75 1000 0

dotPlot(˜PPM, width = 2, data = Boot.Ink)

Rand.Ink <- do(1000) * lm(Price ˜ shuffle(PPM), data = InkjetPrinters)

favstats(˜PPM, data = Rand.Ink)

min Q1 median Q3 max mean sd n missing

-83.53 -19.82 0.2183 18.93 80.83 -0.01323 28.7 1000 0

dotPlot(˜PPM, width = 2, data = Rand.Ink)
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178 Inference for Regression

Example 9.2

Example9.2summary(lm(Price ˜ PPM, data = InkjetPrinters))

Call:

lm(formula = Price ˜ PPM, data = InkjetPrinters)

Residuals:

Min 1Q Median 3Q Max

-79.38 -51.40 -3.49 43.85 87.76

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -94.2 56.4 -1.67 0.11209

PPM 90.9 19.5 4.66 0.00019 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 58.5 on 18 degrees of freedom

Multiple R-squared: 0.547,Adjusted R-squared: 0.522

F-statistic: 21.7 on 1 and 18 DF, p-value: 0.000193

confint(lm(Price ˜ PPM, data = InkjetPrinters), "PPM")

2.5 % 97.5 %

PPM 49.94 131.8

Example 9.3

Example9.3head(RestaurantTips)

Bill Tip Credit Guests Day Server PctTip CreditCard

1 23.70 10.00 n 2 Fri A 42.2 No

2 36.11 7.00 n 3 Fri B 19.4 No

3 31.99 5.01 y 2 Fri A 15.7 Yes

4 17.39 3.61 y 2 Fri B 20.8 Yes

5 15.41 3.00 n 2 Fri B 19.5 No

6 18.62 2.50 n 2 Fri A 13.4 No

summary(lm(Tip ˜ Bill, data = RestaurantTips))

Call:

lm(formula = Tip ˜ Bill, data = RestaurantTips)

Residuals:

Min 1Q Median 3Q Max

-2.391 -0.489 -0.111 0.284 5.974

Coefficients:
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Inference for Regression 179

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.29227 0.16616 -1.76 0.081 .

Bill 0.18221 0.00645 28.25 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.98 on 155 degrees of freedom

Multiple R-squared: 0.837,Adjusted R-squared: 0.836

F-statistic: 798 on 1 and 155 DF, p-value: <2e-16

confint(lm(Tip ˜ Bill, data = RestaurantTips), "Bill", level = 0.9)

5 % 95 %

Bill 0.1715 0.1929

Example 9.4

1. H0: β1 = 0; Ha: β1 , 0

2. Test statistic: b1 = 0.0488 (sample slope)

3. t-test for slope:

Example9.4
summary(lm(PctTip ˜ Bill, data = RestaurantTips))

Call:

lm(formula = PctTip ˜ Bill, data = RestaurantTips)

Residuals:

Min 1Q Median 3Q Max

-8.993 -2.310 -0.646 1.468 25.533

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.5096 0.7396 21.0 <2e-16 ***

Bill 0.0488 0.0287 1.7 0.091 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.36 on 155 degrees of freedom

Multiple R-squared: 0.0183,Adjusted R-squared: 0.012

F-statistic: 2.89 on 1 and 155 DF, p-value: 0.0911

t-Test for Correlation

Example 9.5

Example9.5summary(lm(CostBW ˜ PPM, data = InkjetPrinters))
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180 Inference for Regression

Call:

lm(formula = CostBW ˜ PPM, data = InkjetPrinters)

Residuals:

Min 1Q Median 3Q Max

-2.138 -0.729 -0.337 0.532 3.807

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.683 1.284 6.76 2.5e-06 ***

PPM -1.552 0.444 -3.50 0.0026 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.33 on 18 degrees of freedom

Multiple R-squared: 0.405,Adjusted R-squared: 0.372

F-statistic: 12.2 on 1 and 18 DF, p-value: 0.00257

Example 9.6

Example9.6summary(lm(PctTip ˜ Bill, data = RestaurantTips))

Call:

lm(formula = PctTip ˜ Bill, data = RestaurantTips)

Residuals:

Min 1Q Median 3Q Max

-8.993 -2.310 -0.646 1.468 25.533

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.5096 0.7396 21.0 <2e-16 ***

Bill 0.0488 0.0287 1.7 0.091 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.36 on 155 degrees of freedom

Multiple R-squared: 0.0183,Adjusted R-squared: 0.012

F-statistic: 2.89 on 1 and 155 DF, p-value: 0.0911

Coefficient of Determination: R-squared

Example 9.7

Example9.7summary(lm(Price ˜ PPM, data = InkjetPrinters))

Call:

lm(formula = Price ˜ PPM, data = InkjetPrinters)
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Inference for Regression 181

Residuals:

Min 1Q Median 3Q Max

-79.38 -51.40 -3.49 43.85 87.76

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -94.2 56.4 -1.67 0.11209

PPM 90.9 19.5 4.66 0.00019 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 58.5 on 18 degrees of freedom

Multiple R-squared: 0.547,Adjusted R-squared: 0.522

F-statistic: 21.7 on 1 and 18 DF, p-value: 0.000193

Checking Conditions for a Simple Linear Model

Example 9.9

Example9.9xyplot(Tip ˜ Bill, data = RestaurantTips, type = c("p", "r"), cex = 0.5)

xyplot(PctTip ˜ Bill, data = RestaurantTips, type = c("p", "r"), cex = 0.5)
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9.2 ANOVA for Regression

Partitioning Variability

We can also think about regression as a way to analyze the variability in the response. This is a lot like the
ANOVA tables we have seen before. This time:

SST =
∑

(y − y)2

SSE =
∑

(y − ŷ)2

SSM =
∑

(ŷ − y)2

SST = SSM + SSE
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182 Inference for Regression

As before, when SSM is large and SSE is small, then the model (ŷ = β̂0 + β̂1x) explains a lot of the variability
and little is left unexplained (SSE). On the other hand, if SSM is small and SSE is large, then the model
explains only a little of the variability and most of it is due to things not explained by the model.

Example 9.10

Example9.10summary(lm(Calories ˜ Sugars, Cereal))

Call:

lm(formula = Calories ˜ Sugars, data = Cereal)

Residuals:

Min 1Q Median 3Q Max

-36.57 -25.28 -2.55 17.80 51.81

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 88.920 10.812 8.22 6.0e-09 ***

Sugars 4.310 0.927 4.65 7.2e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 26.6 on 28 degrees of freedom

Multiple R-squared: 0.436,Adjusted R-squared: 0.416

F-statistic: 21.6 on 1 and 28 DF, p-value: 7.22e-05

anova(lm(Calories ˜ Sugars, Cereal))

Analysis of Variance Table

Response: Calories

Df Sum Sq Mean Sq F value Pr(>F)

Sugars 1 15317 15317 21.6 7.2e-05 ***

Residuals 28 19834 708

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

F-Statistic

• MSM = SSM/DFM = SSM/(number of groups− 1)

• MSE = SSE/DFE = SSE/(n−number of groups)

MS stands for “mean square”

Our test statistic is

F =
MSM
MSE

Last Modified: September 4, 2014 ©2014



Inference for Regression 183

Example 9.11

Example9.11SSM <- 15317

MSM <- SSM/(2 - 1)

MSM

[1] 15317

SSE <- 19834

MSE <- SSE/(30 - 2)

MSE

[1] 708.4

Example9.11b

F <- MSM/MSE

F

[1] 21.62

pf(F, 1, 28, lower.tail = FALSE)

[1] 7.217e-05

Example 9.12

Example9.12summary(lm(Calories ˜ Sodium, Cereal))

Call:

lm(formula = Calories ˜ Sodium, data = Cereal)

Residuals:

Min 1Q Median 3Q Max

-47.39 -22.92 -8.01 18.75 76.23

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 103.759 18.868 5.50 7.1e-06 ***

Sodium 0.137 0.081 1.69 0.1

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 33.8 on 28 degrees of freedom

Multiple R-squared: 0.0922,Adjusted R-squared: 0.0598

F-statistic: 2.84 on 1 and 28 DF, p-value: 0.103

anova(lm(Calories ˜ Sodium, Cereal))
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184 Inference for Regression

Analysis of Variance Table

Response: Calories

Df Sum Sq Mean Sq F value Pr(>F)

Sodium 1 3241 3241 2.84 0.1

Residuals 28 31909 1140

The percentage of explained variability is denoted r2 or R2:

R2 =
SSM
SST

=
SSM

SSM + SSE

Example 9.13

The summary of the linear model shows us the coefficient of determination but we can also find it manually.

Example9.13

SSM <- 15317

SST <- SSM + 19834

R2 <- SSM/SST

R2

[1] 0.4357

rsquared(lm(Calories ˜ Sugars, data = Cereal))

[1] 0.4357

Example9.13b

SSM <- 3241

SST <- SSM + 31909

R2 <- SSM/SST

R2

[1] 0.0922

rsquared(lm(Calories ˜ Sodium, data = Cereal))

[1] 0.09221

Computational Details

Example 9.15

Again, the summary of the linear model gives us the standard deviation of the error but we can calculate it
manually.
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Example9.15

SSE <- 31909

SD <- sqrt(SSE/(30 - 2))

SD

[1] 33.76

Example 9.16

Example9.16favstats(˜Sodium, data = Cereal)

min Q1 median Q3 max mean sd n missing

5 183.8 217 251.2 408 220.2 77.41 30 0

SE <- SD/(77.4 * sqrt(30 - 1)) # SD from Example 9.15

SE

[1] 0.08099

9.3 Confidence and Prediction Intervals

Interpreting Confidence and Prediction Intervals

It may be very interesting to make predictions when the explanatory variable has some other value, however.
There are two ways to do this in R. One uses the predict() function. It is simpler, however, to use the
makeFun() function in the mosaic package, so that’s the approach we will use here.

Prediction intervals

1. are much wider than confidence intervals

2. are very sensitive to the assumption that the population normal for each value of the predictor.

3. are (for a 95% confidence level) a little bit wider than

ŷ ± 2SE

where SE is the “residual standard error” reported in the summary output.

The prediction interval is a little wider because it takes into account the uncertainty in our estimated
slope and intercept as well as the variability of responses around the true regression line.

Example 9.18

First, let’s build our linear model and store it.
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Example9.18

ink.model <- lm(Price ˜ PPM, data = InkjetPrinters)

summary(ink.model)

Call:

lm(formula = Price ˜ PPM, data = InkjetPrinters)

Residuals:

Min 1Q Median 3Q Max

-79.38 -51.40 -3.49 43.85 87.76

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -94.2 56.4 -1.67 0.11209

PPM 90.9 19.5 4.66 0.00019 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 58.5 on 18 degrees of freedom

Multiple R-squared: 0.547,Adjusted R-squared: 0.522

F-statistic: 21.7 on 1 and 18 DF, p-value: 0.000193

Now let’s create a function that will estimate values of Price for a given value of PPM:

Example9.18b

Ink.Price <- makeFun(ink.model)

We can now input a PPM and see what our least squares regression line predicts for the price:

Example9.18c

Ink.Price(PPM = 3) # estimate Price when PPM is 3.0

1

178.4

R can compute two kinds of confidence intervals for the response for a given value

1. A confidence interval for the mean response for a given explanatory value can be computed by adding
interval='confidence'.

Example9.18d
Ink.Price(PPM = 3, interval = "confidence")

fit lwr upr

1 178.4 149.9 206.9

2. An interval for an individual response (called a prediction interval to avoid confusion with the confidence
interval above) can be computed by adding interval='prediction' instead.

Example9.18e
Ink.Price(PPM = 3, interval = "prediction")

fit lwr upr

1 178.4 52.15 304.7
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Figure 9.13

The figure below shows the confidence (dotted) and prediction (dashed) intervals as bands around the regres-
sion line.

Figure9.13

xyplot(Price ˜ PPM, data = InkjetPrinters, panel = panel.lmbands, cex = 0.6, alpha = 0.5)
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As the graph illustrates, the intervals are narrow near the center of the data and wider near the edges of the
data. It is not safe to extrapolate beyond the data (without additional information), since there is no data to let
us know whether the pattern of the data extends.
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10
Multiple Regression

10.1 Multiple Predictors

Multiple Regression Model

Example 10.1

Example10.1lm(Price ˜ PPM + CostBW, InkjetPrinters)

Call:

lm(formula = Price ˜ PPM + CostBW, data = InkjetPrinters)

Coefficients:

(Intercept) PPM CostBW

89.2 58.1 -21.1

Ink.Price <- makeFun(lm(Price ˜ PPM + CostBW, data = InkjetPrinters))

Ink.Price(PPM = 3, CostBW = 3.7)

1

185.3

Testing Individual Terms in a Model

Example 10.2

Example10.2summary(lm(Price ˜ PPM + CostBW, data = InkjetPrinters))

Call:

lm(formula = Price ˜ PPM + CostBW, data = InkjetPrinters)
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Residuals:

Min 1Q Median 3Q Max

-80.91 -35.60 -6.98 38.91 82.73

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 89.20 95.74 0.93 0.365

PPM 58.10 22.79 2.55 0.021 *

CostBW -21.13 9.34 -2.26 0.037 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 52.8 on 17 degrees of freedom

Multiple R-squared: 0.652,Adjusted R-squared: 0.611

F-statistic: 15.9 on 2 and 17 DF, p-value: 0.000127

Example 10.3

Example10.3summary(lm(Bodyfat ˜ Weight + Height, data = BodyFat))

Call:

lm(formula = Bodyfat ˜ Weight + Height, data = BodyFat)

Residuals:

Min 1Q Median 3Q Max

-12.770 -3.953 -0.536 4.047 13.283

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.4825 16.2009 4.41 2.7e-05 ***

Weight 0.2316 0.0238 9.72 5.4e-16 ***

Height -1.3357 0.2589 -5.16 1.3e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.75 on 97 degrees of freedom

Multiple R-squared: 0.494,Adjusted R-squared: 0.484

F-statistic: 47.4 on 2 and 97 DF, p-value: 4.48e-15

Example 10.4

Example10.4summary(lm(Bodyfat ˜ Weight + Height + Abdomen, data = BodyFat))

Call:

lm(formula = Bodyfat ˜ Weight + Height + Abdomen, data = BodyFat)

Residuals:

Min 1Q Median 3Q Max
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-9.522 -2.997 0.038 2.893 9.286

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -56.1329 18.1372 -3.09 0.00258 **

Weight -0.1756 0.0472 -3.72 0.00033 ***

Height 0.1018 0.2444 0.42 0.67775

Abdomen 1.0747 0.1158 9.28 5.3e-15 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.2 on 96 degrees of freedom

Multiple R-squared: 0.733,Adjusted R-squared: 0.725

F-statistic: 88 on 3 and 96 DF, p-value: <2e-16

ANOVA for a Multiple Regression Model

Example 10.6

Example10.6Mod0 <- lm(Price ˜ 1, data = InkjetPrinters)

Mod1 <- lm(Price ˜ PPM, data = InkjetPrinters)

Mod2 <- lm(Price ˜ PPM + CostBW, data = InkjetPrinters)

anova(Mod0, Mod1)

Analysis of Variance Table

Model 1: Price ˜ 1

Model 2: Price ˜ PPM

Res.Df RSS Df Sum of Sq F Pr(>F)

1 19 136237

2 18 61697 1 74540 21.8 0.00019 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(Mod0, Mod2)

Analysis of Variance Table

Model 1: Price ˜ 1

Model 2: Price ˜ PPM + CostBW

Res.Df RSS Df Sum of Sq F Pr(>F)

1 19 136237

2 17 47427 2 88809 15.9 0.00013 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Example 10.7

Example10.7Mod0 <- lm(Price ˜ 1, data = InkjetPrinters)
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Mod1 <- lm(Price ˜ PhotoTime + CostColor, data = InkjetPrinters)

summary(Mod1)

Call:

lm(formula = Price ˜ PhotoTime + CostColor, data = InkjetPrinters)

Residuals:

Min 1Q Median 3Q Max

-128.76 -55.55 -1.61 53.63 109.25

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 371.892 66.892 5.56 3.5e-05 ***

PhotoTime 0.104 0.366 0.28 0.7804

CostColor -18.732 5.282 -3.55 0.0025 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 67.9 on 17 degrees of freedom

Multiple R-squared: 0.426,Adjusted R-squared: 0.358

F-statistic: 6.3 on 2 and 17 DF, p-value: 0.00899

anova(Mod0, Mod1)

Analysis of Variance Table

Model 1: Price ˜ 1

Model 2: Price ˜ PhotoTime + CostColor

Res.Df RSS Df Sum of Sq F Pr(>F)

1 19 136237

2 17 78264 2 57973 6.3 0.009 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Example 10.8

Example10.8rsquared(lm(Price ˜ PPM + CostBW, data = InkjetPrinters))

[1] 0.6519

rsquared(lm(Price ˜ PhotoTime + CostColor, data = InkjetPrinters))

[1] 0.4255
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10.2 Checking Conditions for a Regression Model

Histogram/Dotplot/Boxplot of Residuals

Example 10.12

Example10.12ink.model <- lm(Price ˜ PPM, data = InkjetPrinters)

dotPlot(˜resid(ink.model), cex = 0.05, nint = 40)

resid(ink.model)
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Example10.12b

xyplot(resid(ink.model) ˜ fitted(ink.model), type = c("p", "r"), cex = 0.5)

fitted(ink.model)
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Checking Conditions for a Multiple Regression Model

Example 10.13

Example10.13body.model <- lm(Bodyfat ˜ Weight + Abdomen, data = BodyFat)

summary(body.model)

Call:
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lm(formula = Bodyfat ˜ Weight + Abdomen, data = BodyFat)

Residuals:

Min 1Q Median 3Q Max

-9.595 -2.978 -0.018 2.897 9.192

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -48.7785 4.1810 -11.67 < 2e-16 ***

Weight -0.1608 0.0310 -5.19 1.2e-06 ***

Abdomen 1.0441 0.0892 11.71 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.18 on 97 degrees of freedom

Multiple R-squared: 0.733,Adjusted R-squared: 0.727

F-statistic: 133 on 2 and 97 DF, p-value: <2e-16

histogram(˜resid(body.model), breaks = 10)

xyplot(resid(body.model) ˜ fitted(body.model), type = c("p", "r"), cex = 0.5)

resid(body.model)
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10.3 Using Multiple Regression

Choosing a Model

Example 10.14

Example10.14summary(lm(Bodyfat ˜ Weight + Height + Abdomen + Age + Wrist, data = BodyFat))

Call:

lm(formula = Bodyfat ˜ Weight + Height + Abdomen + Age + Wrist,

data = BodyFat)

Residuals:

Min 1Q Median 3Q Max

-10.732 -2.479 -0.207 2.767 9.634
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -24.9416 20.7741 -1.20 0.2329

Weight -0.0843 0.0589 -1.43 0.1555

Height 0.0518 0.2385 0.22 0.8286

Abdomen 0.9676 0.1304 7.42 5.1e-11 ***

Age 0.0774 0.0487 1.59 0.1152

Wrist -2.0580 0.7289 -2.82 0.0058 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.07 on 94 degrees of freedom

Multiple R-squared: 0.754,Adjusted R-squared: 0.741

F-statistic: 57.7 on 5 and 94 DF, p-value: <2e-16

summary(lm(Bodyfat ˜ Weight + Abdomen + Age + Wrist, data = BodyFat))

Call:

lm(formula = Bodyfat ˜ Weight + Abdomen + Age + Wrist, data = BodyFat)

Residuals:

Min 1Q Median 3Q Max

-10.780 -2.443 -0.268 2.829 9.590

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -21.0611 10.5281 -2.00 0.0483 *

Weight -0.0761 0.0447 -1.70 0.0923 .

Abdomen 0.9507 0.1040 9.14 1.1e-14 ***

Age 0.0785 0.0482 1.63 0.1062

Wrist -2.0690 0.7235 -2.86 0.0052 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.05 on 95 degrees of freedom

Multiple R-squared: 0.754,Adjusted R-squared: 0.744

F-statistic: 72.8 on 4 and 95 DF, p-value: <2e-16

Example 10.15

Example10.15summary(lm(Bodyfat ˜ Weight + Abdomen + Wrist, data = BodyFat))

Call:

lm(formula = Bodyfat ˜ Weight + Abdomen + Wrist, data = BodyFat)

Residuals:

Min 1Q Median 3Q Max

-10.067 -3.118 -0.241 2.427 9.361

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.7531 9.4938 -3.03 0.00316 **
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Weight -0.1236 0.0343 -3.61 0.00049 ***

Abdomen 1.0449 0.0872 11.98 < 2e-16 ***

Wrist -1.4659 0.6272 -2.34 0.02151 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.09 on 96 degrees of freedom

Multiple R-squared: 0.747,Adjusted R-squared: 0.739

F-statistic: 94.6 on 3 and 96 DF, p-value: <2e-16

Categorical Variables

Figure 10.9

Figure10.9bwplot(Salary ˜ Gender, horizontal = FALSE, data = SalaryGender)
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Example 10.16

Example10.16summary(lm(Salary ˜ Gender, data = SalaryGender))

Call:

lm(formula = Salary ˜ Gender, data = SalaryGender)

Residuals:

Min 1Q Median 3Q Max

-61.72 -30.13 -9.02 25.58 126.58

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.6 5.8 7.18 1.3e-10 ***

Gender 21.8 8.2 2.66 0.0092 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 41 on 98 degrees of freedom
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Multiple R-squared: 0.0672,Adjusted R-squared: 0.0577

F-statistic: 7.06 on 1 and 98 DF, p-value: 0.00918

Example 10.17

Example10.17summary(lm(Salary ˜ PhD, data = SalaryGender))

Call:

lm(formula = Salary ˜ PhD, data = SalaryGender)

Residuals:

Min 1Q Median 3Q Max

-66.51 -24.49 -5.79 14.17 108.29

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.86 4.52 7.50 3e-11 ***

PhD 47.85 7.23 6.61 2e-09 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 35.3 on 98 degrees of freedom

Multiple R-squared: 0.309,Adjusted R-squared: 0.302

F-statistic: 43.8 on 1 and 98 DF, p-value: 1.98e-09

confint(lm(Salary ˜ PhD, data = SalaryGender))

2.5 % 97.5 %

(Intercept) 24.90 42.83

PhD 33.49 62.21

Accounting for Confounding Variables

Example 10.18

Example10.18summary(lm(Salary ˜ Gender + PhD + Age, data = SalaryGender))

Call:

lm(formula = Salary ˜ Gender + PhD + Age, data = SalaryGender)

Residuals:

Min 1Q Median 3Q Max

-81.3 -18.9 -0.8 14.7 93.5

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.955 10.836 -0.64 0.52253
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Gender 11.094 6.707 1.65 0.10136

PhD 36.431 7.253 5.02 2.4e-06 ***

Age 0.847 0.232 3.65 0.00042 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 32.8 on 96 degrees of freedom

Multiple R-squared: 0.415,Adjusted R-squared: 0.397

F-statistic: 22.7 on 3 and 96 DF, p-value: 3.31e-11

Association between Explanatory Variables

Example 10.19

Example10.19summary(lm(Final ˜ Exam1 + Exam2, data = StatGrades))

Call:

lm(formula = Final ˜ Exam1 + Exam2, data = StatGrades)

Residuals:

Min 1Q Median 3Q Max

-19.323 -2.550 0.613 2.963 11.443

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 30.895 7.997 3.86 0.00034 ***

Exam1 0.447 0.161 2.78 0.00773 **

Exam2 0.221 0.176 1.26 0.21509

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.38 on 47 degrees of freedom

Multiple R-squared: 0.525,Adjusted R-squared: 0.505

F-statistic: 26 on 2 and 47 DF, p-value: 2.51e-08

Figure 10.10

Figure10.10xyplot(Final ˜ Exam1, type = c("p", "r"), data = StatGrades)

xyplot(Final ˜ Exam2, type = c("p", "r"), data = StatGrades)

xyplot(Exam2 ˜ Exam1, type = c("p", "r"), data = StatGrades)
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